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Abstract

Numerical integration of stochastic differential equations together with the Monte Carlo technique is used to

evaluate conditional Wiener integrals of exponential-type functionals. An explicit Runge–Kutta method of order four

and implicit Runge–Kutta methods of order two are constructed. The corresponding convergence theorems are proved.

To reduce the Monte Carlo error, a variance reduction technique is considered. Results of numerical experiments are

presented.
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1. Introduction

We consider Wiener integrals

J ¼
Z
Cd
0;a;T ;b

F ðxð�ÞÞdlT ;b
0;a ðxÞ ð1:1Þ

of the exponential-type functionals

F ðxð�ÞÞ ¼ exp

Z T

0

f ðt; xðtÞÞdt
� �

: ð1:2Þ
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Here lT ;b
0;a ðxÞ is a conditional Wiener measure which corresponds to the Brownian paths XT ;b

0;a ðtÞ with fixed

initial and final points, i.e., it corresponds to the d-dimensional Brownian bridge from a at the time t ¼ 0

into b at the time t ¼ T : The integral (1.1) is understood in the sense of Lebesgue integral with respect to the
measure lT ;b

0;a ðxÞ and is taken over the set Cd
0;a;T ;b of all d-dimensional continuous vector-functions xðtÞ

satisfying the conditions xð0Þ ¼ a, xðT Þ ¼ b (see, e.g. [4]).

A relation of such integrals with quantum physics and some equations of mathematical physics can be

found, e.g., in [2–4,9,13]. In particular, the Feynman path integral of the form

J ¼
Z

exp

Z T

0

m _x2ðtÞ
2

" 
� V ðxðtÞÞ

#
dt

!
DxðtÞ

is equivalent to the integral (1.1), (1.2) with f ¼ �V :
Numerical evaluation of Wiener integrals is an important and difficult task. Many approaches are

proposed for solving this problem (see, e.g. [1,2,15] and references therein). As a rule, the known numerical

methods reduce a path integral to a high dimensional integral which is then approximated using either

classical or Monte Carlo methods. The high dimensionality of these integrals makes calculation of the

Wiener integrals extremely difficult.

In [5,10,14], the approach using numerical integration (in the weak sense) of stochastic differential

equations with application of the Monte Carlo technique is proposed for computation of Wiener integrals
of the form

I ¼
Z
Cd
0;0

F ðxð�ÞÞdl0;0ðxÞ; ð1:3Þ

where l0;0ðxÞ is a Wiener measure corresponding to Brownian paths with the fixed initial point ð0; 0Þ,
F ðxð�ÞÞ ¼ uðxðT Þ,

R T
0
f ðt; xðtÞÞdtÞ, and uðx; zÞ is a function of d þ 1 arguments from a sufficiently wide class.

The approach is based on the following probabilistic representation of the integral (1.3):

I ¼ EuðX0;0ðT Þ; Z0;0;0ðT ÞÞ; ð1:4Þ

where X0;0ðtÞ; Z0;0;0ðtÞ, 06 t6 T , is the solution of the ðd þ 1Þ-dimensional system of stochastic differential

equations (SDEs)

dX ¼ dwðtÞ; X0;0ð0Þ ¼ 0;

dZ ¼ f ðt;X 1; . . . ;XdÞdt; Z0;0;0ð0Þ ¼ 0;
ð1:5Þ

and wðtÞ ¼ ðw1ðtÞ; . . . ;wdðtÞÞT is a d-dimensional standard Wiener process.

An efficiency of this approach is due to the fact that the system (1.5) has the fixed dimension d þ 1 and

the corresponding accuracy is reached by means of a choice of a method and a step of numerical integration

and a number M of Monte Carlo simulations. Thus, the problem of calculating the infinite-dimensional

Wiener integral I is reduced to the Cauchy problem (1.5). This problem can naturally be regarded as one-

dimensional since it contains only one independent variable. We underline that in other methods the path

integral is reduced to a high dimensional Riemann integral and the accuracy is reached by increasing its

dimension. The approach based on the probabilistic representation (1.4), (1.5) is especially effective for
evaluating Wiener integrals (1.3) in the case of exponential-type functionals because in this case there are

fourth-order Runge–Kutta methods [5,10].

Here the approach of [5,10,14] is developed for evaluating the conditional Wiener integral (1.1), (1.2).

The corresponding probabilistic representation contains a more complicated system than (1.5). The solu-

tion of this system gives a Markov representation of the Brownian bridge. The system is singular and this
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circumstance stipulates a certain complexity of theoretical proofs. Nevertheless the constructed fourth-

order Runge–Kutta algorithms are equally simple and effective as in the case of the Wiener integral (1.3).

The effectiveness of these algorithms allows us to evaluate integrals (1.1), (1.2) for a large dimension d:
In this paper, we restrict ourselves to conditional Wiener integrals of exponential-type functionals al-

though the approach can also be applied to conditional Wiener integrals of functionals of an integral type

(cf. [14]).

In Section 2, a fourth-order explicit Runge–Kutta method is constructed. Its one-step error is analyzed

in Section 3. Implicit methods of order two are derived in Section 4. These methods have an implicitness

with respect to the linear part only which is easily analytically resolved. In our approach, there are two

types of errors: the error of numerical integration and the Monte Carlo error. To reduce the Monte Carlo

error, the method of control variates is considered in Section 5. Some numerical tests are presented in
Section 6. A summary of the obtained results is given in Section 7. Proofs of convergence theorems can be

found in the appendix.
2. Explicit Runge–Kutta method of order four

As it is known [7,8], the d-dimensional Brownian bridge X ðtÞ ¼ X0;aðtÞ ¼ XT ;b
0;a ðtÞ, 06 t6 T , from a to b

can be characterized as the pathwise unique solution of the system of SDEs

dX ¼ b� X
T � t

dt þ dwðtÞ; 06 t < T ; X ð0Þ ¼ a; ð2:1Þ

with

X ðT Þ ¼ b; ð2:2Þ

where wðtÞ ¼ ðw1ðtÞ; . . . ;wdðtÞÞT is a d-dimensional standard Ft-Wiener process. The system is considered

on a probability space ðX;F; P Þ, and Ft, 06 t6 T , is a non-decreasing family of r-algebras of F.

Let us also introduce the scalar equation

dY ¼ f ðt;X ðtÞÞY dt; 06 t6 T ; Y ð0Þ ¼ 1; ð2:3Þ

where X ðtÞ is defined by (2.1), (2.2) and f ðt; xÞ is the same as in (1.2). Then the Wiener integral (1.1), (1.2) is

equal to

J ¼ EY ðT Þ: ð2:4Þ

Thus, evaluation of the Wiener integral (1.1), (1.2) is reduced to the problem of numerical integration of

the system (2.1)–(2.3).

Introduce a discretization of the time interval ½0; T �, for definiteness the equidistant one with a time step

h > 0:

tk ¼ kh; k ¼ 0; . . . ;N ; tN ¼ T ;

and let tkþ1=2 :¼ tk þ h=2:
To get a higher order method for (2.1)–(2.3), we need to simulate the solution of (2.1) exactly. The

solution of (2.1) is

X ðtÞ ¼ a
T � t
T

þ b
t
T
þ ðT � tÞ

Z t

0

dwðsÞ
T � s

: ð2:5Þ
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Hence

X ðt þ hÞ ¼ X ðtÞ þ h
b� X ðtÞ
T � t

þ ðT � t � hÞ
Z tþh

t

dwðsÞ
T � s

: ð2:6Þ

We have

E ðT
�

� t � hÞ
Z tþh

t

dwðsÞ
T � s

����X ðtÞ
�
¼ 0;

E ðT
�

� t � hÞ
Z tþh

t

dwðsÞ
T � s

����X ðtÞ
�2

¼ 1

�
� h
T � t

�
h:

ð2:7Þ

We can exactly simulate the solution of (2.1) by a simple recurrent procedure based on the formula

X ðt þ hÞ ¼ X ðtÞ þ h
b� X ðtÞ
T � t

þ h1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t � h
T � t

r
n; t < T ; ð2:8Þ

where n is a random vector which components are Gaussian random variables with zero mean and unit

variance and they are independent of X ðtÞ:
Now let us formally apply a standard deterministic explicit fourth-order Runge–Kutta method to Eq.

(2.3) assuming that X ðtÞ is a known function. Then, taking into account (2.8), we obtain the following

algorithm for integrating the system (2.1)–(2.3):

X ð0Þ ¼ a;

X ðtkþ1=2Þ ¼ X ðtkÞ þ
h
2

b� X ðtkÞ
T � tk

þ h1=2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1=2

T � tk

r
nkþ1=2; k ¼ 0; . . . ;N � 1;

X ðtkþ1Þ ¼ X ðtkþ1=2Þ þ
h
2

b� X ðtkþ1=2Þ
T � tkþ1=2

þ h1=2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

T � tkþ1=2

s
nkþ1; k ¼ 0; . . . ;N � 2;

X ðtN Þ ¼ b;

ð2:9Þ
Y0 ¼ 1;

k1 ¼ f ðtk;X ðtkÞÞYk; k2 ¼ f ðtkþ1=2;X ðtkþ1=2ÞÞ Yk½ þ hk1=2�;
k3 ¼ f ðtkþ1=2;X ðtkþ1=2ÞÞ Yk½ þ hk2=2�; k4 ¼ f ðtkþ1;X ðtkþ1ÞÞ Yk½ þ hk3�;

Ykþ1 ¼ Yk þ
h
6

k1ð þ 2k2 þ 2k3 þ k4Þ; k ¼ 0; . . . ;N � 1;

ð2:10Þ

where nkþ1=2, nkþ1 are d-dimensional random vectors which components are mutually independent random

variables with standard normal distribution Nð0; 1Þ:
Since the function X ðtÞ is non-smooth, the deterministic result on the accuracy order of the involved

Runge–Kutta method is not applicable here and a separate convergence theorem is needed. The following

theorem is proved under some assumptions on the function f ðt; xÞ (see them after (3.4)). Its proof is based
on a thorough analysis of the one-step error which is made in the next section and in Appendix A. The

proof of the convergence theorem itself is given in Appendix B.

Theorem 2.1. The method (2.9), (2.10) applied to evaluation of the Wiener integral (2.4) is of fourth order of

accuracy, i.e.,

jJ� EYN j ¼ jEY ðT Þ � EYN j6Kh4; ð2:11Þ

where the constant K is independent of h.
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3. Theorem on one-step error

In this section, we consider a one-step error of the method (2.9), (2.10).
We say that a function gðs; xÞ, s 2 ½0; T �, x 2 Rd , belongs to the class F (with respect to the variable x),

written as g 2 F, if there are constants K > 0 and j > 0 such that for all x 2 Rd the following inequality

holds uniformly in s 2 ½0; T �:

jgðs; xÞj6Kð1þ jxjjÞ: ð3:1Þ

Introduce the operator

L ¼ o

ot
þ
Xd
i¼1

bi � xi

T � t
o

oxi
þ 1

2

Xd
i¼1

o2

oxið Þ2
; 06 t < T : ð3:2Þ

We observe that this operator contains singularity since the denominator T � t tends to zero as t goes to T .
Consider the function

uðt; xÞ ¼ EYt;x;1ðT Þ: ð3:3Þ

It satisfies the Cauchy problem

Luþ fu ¼ 0; 06 t < T ; x 2 Rd ; uðT ; xÞ ¼ 1: ð3:4Þ

We assume that the function f ðt; xÞ is sufficiently smooth, belongs to the class F together with its partial

derivatives of a sufficiently high order and is such that the problem (3.4) has a unique solution which is

sufficiently smooth and belongs to the class F together with its partial derivatives of a sufficiently high
order. In addition, we suppose that EY 2ðtÞ exists and bounded on ½0; T � and that for all sufficiently small h
the second moments EY 2

k are uniformly bounded with respect to h. For instance, the latter conditions are

satisfied when the function f ðt; xÞ is bounded. Therefore, theoretically, we can use Theorem 2.1, approx-

imating f ðt; xÞ (if it is unbounded) by an appropriate bounded function.

Let g be a sufficiently smooth function belonging to the class F together with its partial derivatives up to

a sufficiently high order. Then the expectations for a nonnegative integer m

ELlgðh;X ðhÞÞ; l ¼ 0; 1; . . . ;mþ 1;
E
o

oxi
Llgðh;X ðhÞÞ

� �2

; l ¼ 0; 1; . . . ;m; i ¼ 1; . . . ; d;

exist and are continuous with respect to 06 h < T : And the following formulas are also valid for

t6 s6 t þ h < T :

Eðgðt þ h;Xt;xðt þ hÞÞjFsÞ ¼ gðs;Xt;xðsÞÞ þ ðt þ h� sÞLgðs;Xt;xðsÞÞ þ � � � þ ðt þ h� sÞm

m!
Lmgðs;Xt;xðsÞÞ

þ
Z tþh

s

ðt þ h� hÞm

m!
EðLmþ1gðh;Xt;xðhÞÞjFsÞdh; ð3:5Þ
Egðt þ h;Xt;xðt þ hÞÞ ¼ gðt; xÞ þ hLgðt; xÞ þ � � � þ hm

m!
Lmgðt; xÞ

þ
Z tþh

t

ðt þ h� hÞm

m!
ELmþ1gðh;Xt;xðhÞÞdh: ð3:6Þ



280 G.N. Milstein, M.V. Tretyakov / Journal of Computational Physics 197 (2004) 275–298
The expansions (3.5) and (3.6) are analogous to an expansion of semigroups. Their proof is available in

[10, p. 137].

It is convenient to introduce the additional notation for the approximation defined by (2.10):
�Y0;a;1ðtkÞ ¼ Yk and also �Ys;x;yðtÞ, tP s, by which we mean the approximation of (2.3) started from y at t ¼ s
with X ðsÞ ¼ x:

It is not difficult to see that

Yt;x;yðt þ t0Þ ¼ yYt;x;1ðt þ t0Þ; �Ytk ;x;yðtkþk0 Þ ¼ y�Ytk ;x;1ðtkþk0 Þ; EYt;x;yðT Þ ¼ yEYt;x;1ðT Þ ¼ yuðt; xÞ; ð3:7Þ

where uðt; xÞ is the solution of the problem (3.4).

Recall that t0 ¼ 0, X0 ¼ a; Y0 ¼ 1: Using (3.3) and (3.7) and the fact that we simulate Xk ¼ X ðtkÞ exactly,
we can represent the global error of the method (2.9), (2.10) (cf. (2.11)) in the form

EY0;a;1ðT Þ
��� � E�Y0;a;1ðT Þ

��� ¼ EYt0;X0;Y0ðT Þ
�� � EYN

�� ¼ uðt0;X0ÞY0j � EuðtN ;XN ÞYN j

¼
XN�1

k¼0

Euðtk;X ðtkÞÞYk
h����� � Euðtkþ1;X ðtkþ1ÞÞ�Ytk ;Xk ;Yk ðtkþ1Þ

i�����
¼

XN�1

k¼0

EYk uðtk;X ðtkÞÞ
h����� � uðtkþ1;X ðtkþ1ÞÞ�Ytk ;Xk ;1ðtkþ1Þ

i�����
6

XN�1

k¼0

EYk uðtk;X ðtkÞÞ
h��� � uðtkþ1;Xtk ;Xk ðtkþ1ÞÞ�Ytk ;Xk ;1ðtkþ1Þ

i���: ð3:8Þ

We have

Rk :¼ EYk uðtk;X ðtkÞÞ
h��� � uðtkþ1;Xtk ;Xk ðtkþ1ÞÞ�Ytk ;Xk ;1ðtkþ1Þ

i���
¼ EYkE uðtk;XkÞ

h��� � uðtkþ1;Xtk ;Xk ðtkþ1ÞÞ�Ytk ;Xk ;1ðtkþ1ÞjFtk

i���: ð3:9Þ

First, we analyze Rk for k ¼ 0; . . . ;N � 2: To this end, we consider the one-step error for 06 t < T � h:

rðt; xÞ :¼ Euðt þ h;Xt;xðt þ hÞÞ�Yt;x;1ðt þ hÞ � uðt; xÞ: ð3:10Þ

We rewrite (2.10) on a single step in the form:

�Yt;x;1ðt þ hÞ ¼ 1þ h
6

f0
�

þ 4f1=2 þ f1
�
þ h2

6
f0f1=2
	

þ f 2
1=2 þ f1=2f1



þ h3

12
f0f 2

1=2

	
þ f 2

1=2f1


þ h4

24
f0f 2

1=2f1; ð3:11Þ

where f0 :¼ f ðt; xÞ, f1=2 :¼ f ðt þ h=2;Xt;xðt þ h=2ÞÞ, and f1 :¼ f ðt þ h;Xt;xðt þ hÞÞ:
Using (3.6), we get

Euðt þ h;Xt;xðt þ hÞÞ ¼ uðt; xÞ þ hLuðt; xÞ þ h2

2
L2uðt; xÞ þ h3

6
L3uðt; xÞ þ h4

24
L4uðt; xÞ

þ
Z tþh

t

ðt þ h� hÞ4

24
EL5uðh;Xt;xðhÞÞdh; ð3:12Þ
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Ef0uðt þ h;Xt;xðt þ hÞÞ ¼ f0Euðt þ h;Xt;xðt þ hÞÞ

¼ f0 uðt; xÞ
"

þ hLuðt; xÞ þ h2

2
L2uðt; xÞ þ h3

6
L3uðt; xÞ

þ
Z tþh

t

ðt þ h� hÞ3

6
EL4uðh;Xt;xðhÞÞdh

#
; ð3:13Þ

Ef1uðt þ h;Xt;xðt þ hÞÞ ¼ f0uðt; xÞ þ hL fuð Þðt; xÞ þ h2

2
L2 fuð Þðt; xÞ þ h3

6
L3 fuð Þðt; xÞ

þ
Z tþh

t

ðt þ h� hÞ3

6
EL4 fuð Þðh;Xt;xðhÞÞdh: ð3:14Þ

Further,

Ef1=2uðt þ h;Xt;xðt þ hÞÞ ¼ E f1=2E uðt
��

þ h;Xt;xðt þ hÞÞjFtþh=2

��
;

and by (3.5) we obtain

E uðt
�

þ h;Xt;xðt þ hÞÞjFtþh=2

�
¼ uðt þ h=2;Xt;xðt þ h=2ÞÞ þ h

2
Luðt þ h=2;Xt;xðt þ h=2ÞÞ

þ h2

8
L2uðt þ h=2;Xt;xðt þ h=2ÞÞ þ h3

48
L3uðt þ h=2;Xt;xðt þ h=2ÞÞ

þ
Z tþh

tþh=2

ðt þ h� hÞ3

6
E L4uðh;Xt;xðhÞÞjFtþh=2

� �
dh;

then

Ef1=2uðt þ h;Xt;xðt þ hÞÞ ¼ f0uðt; xÞ þ
h
2
L fuð Þðt; xÞ þ h2

8
L2 fuð Þðt; xÞ þ h3

48
L3 fuð Þðt; xÞ

þ
Z tþh=2

t

ðt þ h=2� hÞ3

6
EL4 fuð Þðh;Xt;xðhÞÞdhþ

h
2
f0Luðt; xÞ

þ h2

4
L fLuð Þðt; xÞ þ h3

16
L2 fLuð Þðt; xÞ

þ h
2

Z tþh=2

t

ðt þ h=2� hÞ2

2
EL3 fLuð Þðh;Xt;xðhÞÞdhþ

h2

8
f0L2uðt; xÞ

þ h3

16
L fL2u
� �

ðt; xÞ þ h2

8

Z tþh=2

t
ðt þ h=2� hÞEL2 fL2u

� �
ðh;Xt;xðhÞÞdh

þ h3

48
f0L3uðt; xÞ þ h3

48

Z tþh=2

t
EL fL3u
� �

ðh;Xt;xðhÞÞdh

þ Ef1=2

Z tþh

tþh=2

ðt þ h� hÞ3

6
L4uðh;Xt;xðhÞÞdh: ð3:15Þ
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Analogously, we get

Ef0f1=2uðt þ h;Xt;xðt þ hÞÞ ¼ f 2
0 uðt; xÞ þ

h
2
f0L fuð Þðt; xÞ þ h2

8
f0L2 fuð Þðt; xÞ

þ f0

Z tþh=2

t

ðt þ h=2� hÞ2

2
EL3 fuð Þðh;Xt;xðhÞÞdhþ

h
2
f 2
0 Luðt; xÞ

þ h2

4
f0L fLuð Þðt; xÞ þ h

2
f0

Z tþh=2

t
ðt þ h=2� hÞEL2 fLuð Þðh;Xt;xðhÞÞdh

þ h2

8
f 2
0 L

2uðt; xÞ þ h2

8
f0

Z tþh=2

t
EL fL2u
� �

ðh;Xt;xðhÞÞdh

þ f0Ef1=2

Z tþh

tþh=2

ðt þ h� hÞ2

2
L3uðh;Xt;xðhÞÞdh; ð3:16Þ
Ef 2
1=2uðt þ h;Xt;xðt þ hÞÞ ¼ f 2

0 uðt; xÞ þ
h
2
L f 2u
� �

ðt; xÞ þ h2

8
L2 f 2u
� �

ðt; xÞ

þ
Z tþh=2

t

ðt þ h=2� hÞ2

2
EL3 f 2u
� �

ðh;Xt;xðhÞÞdhþ
h
2
f 2
0 Luðt; xÞ

þ h2

4
L f 2Lu
� �

ðt; xÞ þ h
2

Z tþh=2

t
ðt þ h=2� hÞEL2 f 2Lu

� �
ðh;Xt;xðhÞÞdh

þ h2

8
f 2
0 L

2uðt; xÞ þ h2

8

Z tþh=2

t
EL f 2L2u
� �

ðh;Xt;xðhÞÞdh

þ Ef 2
1=2

Z tþh

tþh=2

ðt þ h� hÞ2

2
L3uðh;Xt;xðhÞÞdh; ð3:17Þ
Ef1=2f1uðt þ h;Xt;xðt þ hÞÞ ¼ f 2
0 uðt; xÞ þ

h
2
L f 2u
� �

ðt; xÞ þ h2

8
L2 f 2u
� �

ðt; xÞ

þ
Z tþh=2

t

ðt þ h=2� hÞ2

2
EL3 f 2u
� �

ðh;Xt;xðhÞÞdhþ
h
2
f0L fuð Þðt; xÞ

þ h2

4
L fL fuð Þð Þðt; xÞ þ h

2

Z tþh=2

t
ðt þ h=2� hÞEL2 fL fuð Þð Þðh;Xt;xðhÞÞdh

þ h2

8
f0L2 fuð Þðt; xÞ þ h2

8

Z tþh=2

t
EL fL2 fuð Þ
� �

ðh;Xt;xðhÞÞdh

þ Ef1=2

Z tþh

tþh=2

ðt þ h� hÞ2

2
L3 fuð Þðh;Xt;xðhÞÞdh; ð3:18Þ
Ef0f 2
1=2uðt þ h;Xt;xðt þ hÞÞ ¼ f 3

0 uðt; xÞ þ
h
2
f0L f 2u
� �

ðt; xÞ þ f0

Z tþh=2

t
ðt þ h=2� hÞEL2 f 2u

� �
ðh;Xt;xðhÞÞdh

þ h
2
f 3
0 Luðt; xÞ þ

h
2
f0

Z tþh=2

t
EL f 2Lu
� �

ðh;Xt;xðhÞÞdh

þ f0Ef 2
1=2

Z tþh

tþh=2
ðt þ h� hÞL2uðh;Xt;xðhÞÞdh; ð3:19Þ
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Ef 2
1=2f1uðt þ h;Xt;xðt þ hÞÞ ¼ f 3

0 uðt; xÞ þ
h
2
L f 3u
� �

ðt; xÞ þ
Z tþh=2

t
ðt þ h=2� hÞEL2 f 3u

� �
ðh;Xt;xðhÞÞdh

þ h
2
f 2
0 LðfuÞðt; xÞ þ

h
2

Z tþh=2

t
EL f 2LðfuÞ
� �

ðh;Xt;xðhÞÞdh

þ Ef 2
1=2

Z tþh

tþh=2
ðt þ h� hÞL2 fuð Þðh;Xt;xðhÞÞdh; ð3:20Þ
Ef0f 2
1=2f1uðt þ h;Xt;xðt þ hÞÞ ¼ f 4

0 uðt; xÞ þ f0

Z tþh=2

t
EL f 3u
� �

ðh;Xt;xðhÞÞdh

þ f0Ef 2
1=2

Z tþh

tþh=2
L fuð Þðh;Xt;xðhÞÞdh: ð3:21Þ

Substituting (3.11)–(3.21) in (3.10), we obtain

r ¼ h Lu½ þ fu� þ h2

2
L2u
�

þ LðfuÞ þ fLuþ f 2u
�
þ h3

6
L3u
�

þ L2ðfuÞ þ fL2uþ fL fuð Þ

þ L fLuð Þ þ L f 2u
� �

þ f 2Luþ f 3u
�
þ h4

24
½L4uþ L3ðfuÞ þ fL3uþ fL2ðfuÞ þ f 2L2uþ f 2L fuð Þ

þ f 3Luþ f 4uþ L2ðfLuÞ þ L2ðf 2uÞ þ fLðfLuÞ þ fLðf 2uÞ þ LðfL2uÞ þ LðfLðfuÞÞ

þ Lðf 2LuÞ þ Lðf 3uÞ� þ ~r; ð3:22Þ

where all the operators and functions are evaluated at the point ðt; xÞ and ~r accumulates all the integrals

present in (3.12)–(3.21) multiplied by h to the corresponding power. Taking into account that uðt; xÞ satisfies
the equation from (3.4), we get

rðt; xÞ ¼ ~rðt; xÞ: ð3:23Þ

If the terms in the one-step error rðt; xÞ of the method (2.9), (2.10) (i.e., the terms in ~r) were bounded by
KðxÞh5, KðxÞ 2 F for all t6 T � h, the relations (3.8)–(3.10) would imply that

PN�2

k¼0 Rk 6Ch4, where C is

independent of h: But we see that the one-step error consists of integrals with integrands containing terms

of the form Aðt; xÞ ¼ Ln q1Llq2ð Þðt; xÞ, where q1ðt; xÞ and q2ðt; xÞ are some functions from the class F: The
functions Aðt; xÞ belong to the class F for t 2 ½0; T��, where T� < T is a fixed (independent of hÞ time

moment. Then rðt; xÞj j6KðxÞh5, KðxÞ 2 F; t 2 ½0; T��, with KðxÞ depending on T�: However, the functions

Aðt; xÞ do not belong to the class F for t 2 ½0; T Þ due to the singularity in L (see (3.2)). Consequently, rðt; xÞ
can not be bounded by KðxÞh5, KðxÞ 2 F for all t < T , and a more detailed analysis of the one-step error is

required to prove the convergence theorem. In particular, we need to consider the structure of the
functions Aðt; xÞ in detail. We always assume that L0 is an identity operator. The following lemma is

proved by induction.

Lemma 3.1. Let q1ðt; xÞ and q2ðt; xÞ be sufficiently smooth functions belonging to the class F together with their

partial derivatives of a sufficiently high order. Then for 06 t < T :

Lnðq1Llq2Þðt; xÞ ¼ g0ðt; xÞ þ
Xm
j¼1

X
aj

gajðt; xÞwajðt; xÞ; l; n ¼ 0; 1; . . . ; m ¼ lþ n; ð3:24Þ

where aj is a multi-index such that aj ¼ ði1; . . . ; ijÞ and each ik is from f1; . . . ; dg, the summation in (3.24) is

over all possible values of aj, g0 and gaj are some functions from the class F; and
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wr ¼ br � xr

T � t
; r ¼ 1; . . . ; d;

wajþ1 ¼ bijþ1 � xijþ1

T � t
waj þ o

oxr
waj ; aj ¼ ði1; . . . ; ijÞ; ajþ1 ¼ ði1; . . . ; ij; ijþ1Þ; j ¼ 1; 2; . . . ;

ð3:25Þ

and for all aj

Lwaj ¼ 0: ð3:26Þ

Using specific properties of the functions waj , the following theorem on one-step error is proved in
Appendix A.

Theorem 3.2. The one-step error of the method (2.9), (2.10) can be written in the form

rðt; xÞ ¼ ~rðt; xÞ ¼ h5Sðt; xÞ þ Eqðt; x; hÞ; ð3:27Þ

where Sðt; xÞ is a linear combination of the functions wa2ðt; xÞ, wa3ðt; xÞ, wa4ðt; xÞ, ðT � tÞwa4ðt; xÞ, hwa4ðt; xÞ,
ðT � tÞwa5ðt; xÞ, hwa5ðt; xÞ, ðT � tÞ2wa6ðt; xÞ, ðT � tÞhwa6ðt; xÞ, h2wa6ðt; xÞ, coefficients in this linear combination

are independent of t, x, and h; qðt; x; hÞ is such that

E qðt;X0;aðtÞ; hÞ½ �2n
	 
1=2n

6
Ch5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t � h
p ; t þ h < T ;

with a constant C independent of t and h:

We should emphasize that the most important part of this theorem consists in the equality rðt; xÞ ¼ ~rðt; xÞ
which is due to Eqs. (3.10)–(3.22). Theorem 3.2 is a basis for the proof of Theorem 2.1 on the global error of

the method (2.9), (2.10) (see Appendix B).
4. Implicit Runge–Kutta methods

From the point of view of possible applications, the most interesting case is when the function f is

bounded from above, for example, when f is negative. In this case, the explicit Runge–Kutta method from

Section 2 may cause some computational problems since, for instance, Ykþ1 in (2.10) can become a large

negative number while the exact Y ðtÞ is always positive. Apparently, this may occasionally lead to some

instabilities and require a very small time step to achieve a reasonable accuracy. In such a situation an

implicit method can behave better.
Let us formally apply the deterministic midpoint method to (2.3) provided X ðtÞ is a known function. As

a result, we obtain

X ðh=2Þ ¼ aþ h
2

b� a
T

þ
ffiffiffi
h
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � h=2

T

r
n1=2;

X ðtkþ1=2Þ ¼ X ðtk�1=2Þ þ h
b� X ðtk�1=2Þ
T � tk�1=2

þ
ffiffiffi
h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1=2

T � tk�1=2

s
nkþ1=2; k ¼ 1; . . . ;N � 1;

ð4:1Þ
Y0 ¼ 1;

Ykþ1 ¼ Yk þ hf ðtkþ1=2;X ðtkþ1=2ÞÞ
Yk þ Ykþ1

2
; k ¼ 0; . . . ;N � 1;

ð4:2Þ
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where nkþ1=2, k ¼ 0; . . . ;N � 1, are d-dimensional random vectors which components are mutually inde-

pendent random variables with standard normal distribution Nð0; 1Þ:
Resolving the implicitness in (4.2), we get

Ykþ1 ¼ Yk
1þ h

2
f ðtkþ1=2;X ðtkþ1=2ÞÞ

1� h
2
f ðtkþ1=2;X ðtkþ1=2ÞÞ

: ð4:3Þ

To ensure that the denominator in (4.3) does not vanish for all sufficiently small h, we should require that

the function f ðt; xÞ is bounded from above, i.e., that f ðt; xÞ6 c for all ðt; xÞ, c is a constant. In this case, for

all sufficiently small h the denominator in (4.3) is positive. If f ðt; xÞ6 0, then �16 Yk 6 1 for all k:
We prove the convergence theorem for the method (4.1), (4.2) under the same assumptions as in Section

3 (see p. 5). Note that in the case of f ðt; xÞ6 0, the condition EY 2
k 6C is satisfied due to the uniform

boundedness of the random variables Yk:

Theorem 4.1. The method (4.1), (4.2) applied to evaluation of the Wiener integral (2.4) is of second accuracy

order, i.e.,

Jj � EYN j ¼ EY ðT Þj � EYN j6Kh2; ð4:4Þ

where the constant K is independent of h.

The proof of this theorem is given in Appendix C.

If we formally apply the deterministic Gauss method of order four (see, e.g. [6, p. 71]) to (2.3), assuming

that X ðtÞ is a known function, we obtain

X ðchÞ ¼ aþ ch
b� a
T

þ
ffiffiffiffiffi
ch

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � ch

T

r
nc; ð4:5Þ

X ðð1� cÞhÞ ¼ X ðchÞ þ ð1� 2cÞh b� X ðchÞ
T � ch

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2cÞh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � ð1� cÞh

T � ch

s
n1�c;

X ðtk þ chÞ ¼ X ðtk�1 þ ð1� cÞhÞ þ 2ch
b� X ðtk�1 þ ð1� cÞhÞ

T � tk þ ch
þ

ffiffiffiffiffiffiffi
2ch

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tk � ch
T � tk þ ch

s
nkþc;
X ðtk þ ð1� cÞhÞ ¼ X ðtk þ chÞ þ ð1� 2cÞh b� X ðtk þ chÞ
T � tk � ch

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2cÞh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1 þ ch
T � tk � ch

s
nkþ1�c;

k ¼ 1; . . . ;N � 1;
Y0 ¼ 1;

k1 ¼ f ðtk þ ch;X ðtk þ chÞÞ Yk

"
þ h
4
k1 þ

1

4

 
�

ffiffiffi
3

p

6

!
hk2

#
;

k2 ¼ f ðtk þ ð1� cÞh;X ðtk þ ð1� cÞhÞÞ Yk

"
þ 1

4

 
þ

ffiffiffi
3

p

6

!
hk1 þ

h
4
k2

#
;

Ykþ1 ¼ Yk þ
h
2

k1ð þ k2Þ; k ¼ 0; . . . ;N � 1;

ð4:6Þ
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where c ¼ 1
2
�
ffiffi
3

p

6
and nkþc, nkþ1�c, k ¼ 0; . . . ;N � 1, are d-dimensional random vectors which components

are mutually independent random variables with standard normal distribution Nð0; 1Þ:
Resolving (4.6) with respect to k1 and k2, we get

Ykþ1 ¼ Yk
1þ h

4
f1 þ f2ð Þ þ h2

12
f1f2

1� h
4
f1 þ f2ð Þ þ h2

12
f1f2

; ð4:7Þ

where f1 :¼ f ðtk þ ch;X ðtk þ chÞÞ and f2 :¼ f ðtk þ ð1� cÞh;X ðtk þ ð1� cÞhÞÞ:
The denominator in (4.7) does not vanish for all sufficiently small h for functions f ðt; xÞ being bounded

from above. And if f ðt; xÞ6 0, then �16 Yk 6 1 for all k:
The intuition built on the previous analysis of the methods (2.9), (2.10) and (4.1), (4.2) tells us that the

method (4.5), (4.6) should be of order four. But this assertion turned out to be wrong, the method is of

order two only just as the method (4.1), (4.2). We have not found an implicit method for (2.4) that satisfies

the condition jYkj6 1 for f ðt; xÞ6 0 and has the fourth order of accuracy. In this search it was natural to

restrict ourselves to standard fourth-order deterministic implicit methods for ordinary differential equations

as a basis for potentially higher-order implicit methods for (2.4).
Analogously to Theorems 2.1 and 4.1, we prove the convergence theorem.

Theorem 4.2. The method (4.5), (4.6) applied to evaluation of the Wiener integral (2.4) is of second order of

accuracy, i.e.,

jJ� EYN j ¼ jEY ðT Þ � EYN j6Kh2; ð4:8Þ

where the constant K is independent of h.

Although the methods (4.1), (4.2) and (4.5), (4.6) are of the same order of convergence, in our numerical

tests (see Section 6) the method (4.5), (4.6) gives more accurate results. Apparently, this is due to the fact

that the constant K in (4.8) is, in general, less than its counterpart in (4.4). At the same time, the method

(4.1), (4.2) requires one evaluation of f per step, while (4.5), (4.6) requires two evaluations of f per step.
5. Variance reduction

To evaluate E�Y ðT Þ in practice, we need to apply the Monte Carlo technique. As a result, in addition to

the error of numerical integration considered in the previous sections, there is also the Monte Carlo error:

E�Y ðT Þ ¼ 1

M

XM
m¼1

�Y ðmÞðT Þ þ Rmc; ð5:1Þ

where M is the number of independent realizations �Y ðmÞðT Þ of �Y ðT Þ: The Monte Carlo error Rmc has zero
bias and its variance equals to

VarðRmcÞ ¼
Var �Y ðT Þ

M
¼ VarY ðT Þ

M
þO

h
M

� �
; ð5:2Þ

i.e., the simulated Ŷ :¼ ð1=MÞ
PM

m¼1
�Y ðmÞðT Þ belongs to the confidence interval:

Ŷ 2 ðE�Y ðT Þ � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRmcÞ

p
;E�Y ðT Þ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRmcÞ

p
Þ ð5:3Þ

with the fiducial probability, for example, 0:997 for c ¼ 3 and 0:95 for c ¼ 2:
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Thus, if the variance VarY ðT Þ is big, a large number of trajectoriesM has to be simulated in order to reach

a satisfactory accuracy. To reduce the Monte Carlo error, a variance reduction technique can be used. The

basic idea of variance reduction techniques (see [5,10–12]) is to substitute Y ðT Þ by another random variable
which has the same expectation as Y ðT Þ but a smaller variance. Two variance reduction methods are known:

the method of importance sampling [5,10,11] and the method of control variates [11,12]. A combining

method is given in [11]. The method of important sampling is based on Girsanov�s transformation. In our

case its application changes the linear system (2.1) for X to a system with, in general, a nonlinear drift. As a

result, we lose the advantage of simulating X ðtÞ exactly and of approximating the conditional Wiener in-

tegral by higher-order numerical integrators from Sections 2 and 4. This shortcoming does not arise in the

case of the method of control variates. That is why, we restrict ourselves here to this method only.

In connection with the evaluation of the Wiener integral (1.1), (1.2) consider the following system of Ito
SDEs (cf. (2.1)–(2.3):

dX ¼ b� X
T � t

dt þ dwðtÞ; X ðsÞ ¼ x; ð5:4Þ
dY ¼ f ðt;X ðtÞÞY dt; Y ðsÞ ¼ y; ð5:5Þ
dZ ¼ G>ðt;X ÞY dwðtÞ; ZðsÞ ¼ z: ð5:6Þ

Here Z is a scalar and Gðt; xÞ is a column-vector of dimension d with good analytical properties, the other
notation is the same as before.

It is clear that

uðs; xÞ ¼ EYs;x;1ðT Þ ¼ E Ys;x;1ðT Þ½ þ Zs;x;1;0ðT Þ�:

As it is known [11]

Var Ys;x;1ðT Þ½ þ Zs;x;1;0ðT Þ� ¼ E
Z T

s
Y 2
s;x;1ðtÞ

Xd
i¼1

ou
oxi

�
þ Gi

�2

dt; ð5:7Þ

where uðt; xÞ is the solution of (3.4). Then by choosing Gðt; xÞ as

Gi ¼ � ou
oxi

; j ¼ 1; . . . ; d; ð5:8Þ

we obtain that the variance of Ys;x;1ðT Þ þ Zs;x;1;0ðT Þ is equal to zero.
Applying a numerical method to (5.4)–(5.6), we get the approximate �Ys;x;1ðT Þ and �Zs;x;1;0ðT Þ: The variance

Var �Ys;x;1ðT Þ þ �Zs;x;1;0ðT Þ½ � is close to Var Ys;x;1ðT Þ þ Zs;x;1;0ðT Þ½ �, i.e., it is small in the case of G from (5.8), and,

consequently, a smaller number of independent realizations M is needed to have a satisfactory accuracy.

Of course, in practice the solution uðt; xÞ is not known. However, an approximate solution ~u to the

problem (3.4) can be known. In this case we can take Gðt; xÞ in the form of (5.8) with ~u instead of u and we

may expect a variance reduction. This is demonstrated in numerical examples (see the next section).
6. Numerical tests

1. We take f ðt; xÞ in the form

f ðt; xÞ ¼ ðAðtÞx; xÞ þ ða1ðtÞ; xÞ þ a0ðtÞ; ð6:1Þ

where AðtÞ is a d � d symmetric matrix, a1ðtÞ is a d-dimensional vector, and a0ðtÞ is a scalar function.
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Let uðt; xÞ be the solution of (3.4) with f from (6.1). Introduce the function P ðt; xÞ:

uðt; xÞ ¼ expðP ðt; xÞÞ: ð6:2Þ

This function satisfies the problem

LP þ ðAðtÞx; xÞ þ ða1ðtÞ; xÞ þ a0ðtÞ þ
1

2

Xd
i¼1

oP
oxi

� �2

¼ 0; x 2 Rd ; t < T ; P ðT ; xÞ ¼ 0: ð6:3Þ

We look for a solution of (6.3) in the form

P ðt; xÞ ¼ 1

2
P ðtÞx; xð Þ þ ðpðtÞ; xÞ þ qðtÞ; ð6:4Þ

where P ðtÞ is a d � d symmetric matrix, pðtÞ is a d-dimensional vector, and qðtÞ is a scalar function.
Substituting (6.4) in (6.3) and collecting terms ð�x; xÞ, ð�; xÞ and terms independent of x separately, we

arrive at the system for P ðtÞ, pðtÞ, and qðtÞ:

P 0ðtÞ � 2

T � t
P þ 2AðtÞ þ P 2ðtÞ ¼ 0; PðT Þ ¼ 0; ð6:5Þ
p0ðtÞ � 1

T � t
p þ 1

T � t
PðtÞbþ P ðtÞp þ a1ðtÞ ¼ 0; pðT Þ ¼ 0; ð6:6Þ
q0ðtÞ þ 1

T � t
ðpðtÞ; bÞ þ 1

2
trP ðtÞ þ 1

2
ðpðtÞ; pðtÞÞ þ a0ðtÞ ¼ 0; qðT Þ ¼ 0: ð6:7Þ

Note that if a1ðtÞ � 0 and b ¼ 0, then pðtÞ � 0: And if in addition a0ðtÞ � 0, then

qðtÞ ¼ 1

2

Z T

t
trP ðsÞds:

The solution of (6.5) can be expanded in (positive) powers of T � t: If AðtÞ is a constant matrix A, then
this formal expansion starts with the terms

P ðtÞ ¼ 2

3
A � Tð � tÞ þ 4

45
A2 � Tð � tÞ3 þ � � � :

For test purposes, it is convenient to have an exact solution of (6.5)–(6.7) in a closed analytical form. To

this end, we choose a variable matrix AðtÞ such that

AðtÞ ¼ A� 2

9
A2 � ðT � tÞ2; ð6:8Þ

where A is a constant symmetric matrix. Then the exact solution of the system (6.5)–(6.7) with b ¼ 0,

a0ðtÞ � 0, and a1ðtÞ � 0 has the form

P ðtÞ ¼ 2

3
ðT � tÞA; pðtÞ ¼ 0; qðtÞ ¼ ðT � tÞ2

6
trA: ð6:9Þ

Consequently, the solution of (6.4) is

P ðt; xÞ ¼ T � t
3

ðAx; xÞ þ ðT � tÞ2

6
trA: ð6:10Þ
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Then the conditional Wiener integral (1.1), (1.2) for f from (6.1) with a0 ¼ 0, a1 ¼ 0, AðtÞ from (6.8) and

for a ¼ b ¼ 0 is equal to

J ¼ uð0; 0Þ ¼ exp
T 2

6
trA

� �
:

In our experiments we take the dimension d ¼ 4 and the following matrix A:

A ¼

�1 �0:5 0 0

�0:5 2 �0:5 0
0 �0:5 �2 �0:5
0 0 �0:5 1

2
664

3
775; ð6:11Þ

for which trA ¼ 0:
In Table 1, we give results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1)

with a0 ¼ 0, a1 ¼ 0, AðtÞ from (6.8), (6.11) and for a ¼ b ¼ 0, T ¼ 1 by the explicit Runge–Kutta method

(2.9), (2.10) and the implicit Runge–Kutta methods (4.1), (4.3), and (4.5), (4.7). As it was mentioned in

Section 5, we have two types of errors in numerical simulations here: the error of a method used and the

Monte Carlo error. The results in the table are approximations of E�Y ð1Þ calculated as in (5.1)–(5.3) with

c ¼ 2: Note that the \� " reflects the Monte Carlo error only and it does not reflect the error of a method.
The results obtained are in agreement with the proved convergence theorems (see also Table 2). Recall that

the implicit methods (4.1), (4.2) and (4.5), (4.6) are both of order two. In our tests the method (4.5), (4.6)

performs better. Apparently, this is due to the fact that the constant K in (4.8) is, in general, less than its

counterpart in (4.4).

We also note that for the considered test problem we do not have any numerical instabilities and the

explicit method is computationally effective. As has been discussed at the beginning of Section 4, implicit

methods should be used in practice when explicit methods are affected by instabilities. A further investi-

gation and tests are required in this direction.
2. To reduce the Monte Carlo error in simulation of the above test problem, we can use the variance

reduction technique from Section 5. For f from (6.1) with a0 ¼ 0, a1 ¼ 0, AðtÞ from (6.8), (6.11) and for

b ¼ 0, the solution uðt; xÞ of (3.4) has the form (6.2), (6.10). Therefore, in this case the vector function G
defined in (5.8) is equal to

Giðt; xÞ ¼ � 2

3
ðT � tÞ expðP ðt; xÞÞ

Xd
j¼1

Aijxj; i ¼ 1; . . . ; d; ð6:12Þ

where P ðt; xÞ is from (6.10) and A is from (6.11).

Applying the Euler method to Eq. (5.6), we get

Z0 ¼ 0;

Zkþ1 ¼ Zk þ G>ðtk;X ÞYkDwk; k ¼ 1; . . . ;N � 1:
ð6:13Þ
Table 1

The results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1) with a0 ¼ 0, a1 ¼ 0, AðtÞ from (6.8), (6.11) and

for a ¼ b ¼ 0, T ¼ 1 by the explicit Runge–Kutta method (2.9), (2.10) and the implicit Runge–Kutta methods (4.1), (4.3) and (4.5),

(4.7). The exact solution is 1

h M (2.9), (2.10) (4.1), (4.3) (4.5), (4.7)

0:2 106 0:9994� 0:0013 1:0176� 0:0044 1:0040� 0:0013

0:1 108 1:00002� 0:00013 1:00361� 0:00015 1:00093� 0:00013

0:05 108 0:99996� 0:00013 1:00089� 0:00013 1:00019� 0:00013



Table 2

The results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1) with a0 ¼ 0, a1 ¼ 0, AðtÞ from (6.8), (6.11) and

for a ¼ b ¼ 0, T ¼ 1 by the explicit Runge–Kutta method (2.9), (2.10) and the implicit Runge–Kutta methods (4.1), (4.3) and (4.5),

(4.7) using the variance reduction technique. The exact solution is 1

h M (2.9), (2.10) (4.1), (4.3) (4.5), (4.7)

0:1 107 0:99977� 0:00024 1:00396� 0:00050 1:00103� 0:00023

0:05 107 0:99992� 0:00017 1:00098� 0:00017 1:00023� 0:00016

0:05 108 0:99999� 0:00005 1:00088� 0:00005 1:00027� 0:00005

0:01 107 1:00003� 0:00007 1:00001� 0:00007 1:00003� 0:00007
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If we approximate (5.4), (5.5) using the explicit fourth-order Runge–Kutta method (2.9), (2.10), then Yk
in (6.13) is from (2.10) and the Wiener increment is

Dwk :¼ wðtkþ1Þ � wðtkÞ ¼
h1=2ffiffiffi
2

p nkþ1=2

�
þ nkþ1

�
;

where nkþ1=2 and nkþ1 are the same as in (2.9), (2.10).

It is clear that EZkþ1 ¼ 0: This implies that the method (2.9), (2.10), (6.13) applying to (5.4)–(5.6) to
approximate the Wiener integral J ¼ EY ðT Þ is of order four, i.e., the above realization of the variance

reduction technique does not affect the accuracy of the numerical method. The variance VarY ðT Þ is

approximated with accuracy OðhÞ: Consequently, for a fixed number of realizations M the Monte

Carlo error in simulations using the variance reduction technique is � 1=
ffiffiffi
h

p
times less than in

simulations without variance reduction. In other words, in the case of variance reduction the Monte

Carlo error is proportional to
ffiffiffi
h

p
=
ffiffiffiffiffi
M

p
: This is illustrated in Table 2. In particular, we see for h ¼ 0:05

that to produce results of the same quality we need M ¼ 108 independent trajectories without vari-

ance reduction and M ¼ 107 independent realizations in the variance reduction case (compare Tables 1
and 2).

Remark 6.1. Recall that the implicit methods (4.1), (4.3) and (4.5), (4.7) do not contain simulation of

X ðtkþ1Þ, and the random variables involved in these methods are not enough to evaluate the Wiener in-
crements Dwk on the intervals ½tk; tkþ1�: At the same time, these Wiener increments are needed to realize

(6.13). Thus, to use the variance reduction technique in connection with the implicit methods (4.1), (4.3)

and (4.5), (4.7), we introduce additional random variables and simulation of X ðtkþ1Þ in the corresponding

algorithms (see (C.1) in the case of the method (4.1), (4.3)).

3. Now we illustrate the assertion made at the end of Section 5. To this end we take the function f ðt; xÞ in
the form (6.1) with the constant matrix AðtÞ � A from (6.11) and a0 ¼ 0, a1 ¼ 0: We also put b ¼ 0: In this

case, we do not know the exact solution uðt; xÞ of (3.4). But for the variance reduction we can use an

approximation ~uðt; xÞ of the solution based on the formal expansion (6.9):

~uðt; xÞ ¼ exp
1

2
~P ðtÞx; x
	 
� �

; ð6:14Þ

where

~P ðtÞ ¼ 2

3
A � Tð � tÞ:

Deriving (6.14), we take into account that tr ~P ðtÞ ¼ 0 because of the specific choice of the matrix A which
is from (6.11).
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Then we take the function G in (6.13) of the form

Giðt; xÞ ¼ � o~u
oxi

; j ¼ 1; . . . ; d:

Putting a ¼ 0 and T ¼ 1, we evaluate the corresponding conditional Wiener integral (1.1), (1.2) by the

fourth-order explicit Runge–Kutta method (2.9), (2.10) with time step h ¼ 0:01 and we simulate M ¼ 105

independent realizations. Without variance reduction, we get: J¼: 1:1536� 0:0093, while applying the

variance reduction technique (i.e., using the method (2.9), (2.10), (6.13) for (5.4)–(5.6) we obtain

J¼: 1:1482� 0:0018:We see that the Monte Carlo error is five times less when we use the variance reduction
technique.
7. Summary

In this paper, we use numerical integration of SDEs together with the Monte Carlo technique to evaluate

conditional Wiener integrals of exponential-type functionals. Other known methods reduce the infinite-

dimensional integral to a high dimensional Riemann integral and the accuracy is reached by increasing its
dimension. The high dimensionality of these Riemann integrals makes calculation of the Wiener integrals

extremely difficult. An efficiency of the probabilistic approach considered here is due to the fact that the

problem of calculating the infinite-dimensional Wiener integral is reduced to the Cauchy problem for a

system of SDEs, which can naturally be regarded as one-dimensional. Moreover, due to the specific form of

this system, we propose efficient fourth-order Runge–Kutta methods. In [5,10,14], the probabilistic ap-

proach was used for computation of Wiener integrals with respect to the usual Wiener measure. Here, in the

case of conditional Wiener integrals, we deal with a more complicated system than in [5,10,14]. The solution

of this system contains a Markov representation of the Brownian bridge. The system is singular and this
circumstance stipulates a certain complexity of theoretical proofs although the constructed algorithms are

simple and effective. The effectiveness of these algorithms allows us to evaluate conditional Wiener integrals

for a large dimension of paths. There are two types of errors in our approach: the error of numerical in-

tegration and the Monte Carlo error. Both errors are analyzed in the paper: convergence theorems are

proved for the methods proposed and such a variance reduction technique as the method of control variates

is considered to reduce the Monte Carlo error. Finally, the algorithms are tested on a model problem.
Appendix A. Proof of the theorem on one-step error of the explicit method

The next corollary follows immediately from Lemma 3.1.

Corollary A.1. We have for t6 h < T :

Ewajðh;Xt;xðhÞÞ ¼ wajðt; xÞ;

i.e., wajðh;X0;aðhÞÞ is a martingale.

Let us now consider some other properties of the functions wajðt; xÞ: We note that wajðt; xÞ does not

depend on the order of i1; . . . ; ij in aj (to see this it is enough to show that wði1;...;ij�2;l;rÞðt; xÞ ¼
wði1;...;ij�2;r;lÞðt; xÞÞ: Introduce the function vðr; ajÞ, aj ¼ ði1; . . . ; ijÞ, which is equal to the number of appear-

ances of r in the set fi1; . . . ; ijg: In what follows we will sometimes denote by the same aj different multi-

indices having the length j, and therefore functions waj may differ although they have the same notation.
The next two lemmas are given without proofs.
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Lemma A.2. We have for t < T :

o

oxr
wajðt; xÞ ¼ � vðr; ajÞ

T � t
waj�1ðt; xÞ; j ¼ 2; 3; . . . : ðA:1Þ
Corollary A.3. We have for t < T :

wajþ1ðt; xÞ ¼ br � xr

T � t
wajðt; xÞ � vðr; ajÞ

T � t
waj�1ðt; xÞ; j > 1; ðA:2Þ
brð � xrÞwajðt; xÞ ¼ Tð � tÞwajþ1ðt; xÞ þ vðr; ajÞwaj�1ðt; xÞ; j > 1; ðA:3Þ
bl
�

� xl
�
brð � xrÞwajðt; xÞ ¼ Tð � tÞ2wajþ2ðt; xÞ þ vðl; ajþ1Þ Tð � tÞwajðt; xÞ þ vðr; ajÞ Tð � tÞwajðt; xÞ

þ vðr; ajÞvðl; aj�1Þwaj�2ðt; xÞ; j > 2: ðA:4Þ

Note that waj in (A.4) are, in general, different. We do not distinguish them because in the following

analysis we will concern with the length of multi-indices only.

Lemma A.4. We have for h < T :

E br1
	h�

� X r1
0;aðhÞ



� � � � � brl

	
� X rl

0;aðhÞ


� wajðh;X0;aðhÞÞ

i2n�1=ð2nÞ

6C � Tð � hÞ l�jð Þ=2
;

j ¼ 1; 2; . . . ; l ¼ 0; 1; . . . ; n ¼ 1; 2; . . . ; ðA:5Þ

where the constant C > 0 is independent of h (of course, it depends on n).

Now we are in position to make a detailed analysis of the remainder rðt; xÞ ¼ ~rðt; xÞ from (3.23). Let us

recall that the one-step error consists of integrals with integrands containing terms of the form

Aðt; xÞ ¼ Lnðq1Llq2Þðt; xÞ, where q1ðt; xÞ and q2ðt; xÞ are some functions from the class F. Since L5u ¼ �L4ðfuÞ
(cf. (3.4)), the number m ¼ lþ n for all the terms Aðt; xÞ participating in the remainder is less than or equal

to 4: Using Lemma 3.1, we can represent the term A ¼ Lnðq1Llq2Þðh;Xt;xðhÞÞ as

Aðh;Xt;xðhÞÞ ¼ g0ðh;Xt;xðhÞÞ þ
Xm
j¼1

X
aj

gajðh;Xt;xðhÞÞwajðh;Xt;xðhÞÞ: ðA:6Þ

By Lemma A.4 (see (A.5) with l ¼ 0), we get that

E Aðh;X0;aðhÞÞ½ �2n
	 
1=ð2nÞ

6
C

ðT � hÞm=2
;

where the constant C is independent of h.
Consequently (recall that m6 4Þ, we obtain the following estimate:

E rðt;X0;aðtÞ; hÞ½ �2n
	 
1=2n

6
Ch5

T � t � hð Þ2
: ðA:7Þ

Using this rough estimate, we can show that the method (2.9), (2.10) is at least of order three. To prove the

fourth-order of its convergence, a more sophisticated analysis based on extraction of singularity is needed.
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To clarify the matter, we consider, for example, the following integral from the remainder rðt; xÞ:Z tþh

t

ðt þ h� hÞ4

24
EL5uðh;Xt;xðhÞÞdh ¼ �

Z tþh

t

ðt þ h� hÞ4

24
EL4 fuð Þðh;Xt;xðhÞÞdh

¼ �
Z tþh

t

ðt þ h� hÞ4

24
Eg0ðh;Xt;xðhÞÞ
"

þ
X4
j¼1

X
aj

Egajðh;Xt;xðhÞÞwajðh;Xt;xðhÞÞ
#
dh: ðA:8Þ

We will demonstrate the extraction of singularity analyzing the term with the highest singularity
ga4ðh;Xt;xðhÞÞwa4ðh;Xt;xðhÞÞ: The singularity of wa4ðh;Xt;xðhÞÞ is of order two, i.e.,

E wa4ðh;X0;aðhÞÞ½ �2
	 
1=2

6
C

T � hð Þ2
:

At the same time, wa4ðh;X0;aðhÞÞ is a martingale (see Corollary A.1) and Ewa4ðh;X0;aðhÞÞ ¼ wa4ð0; aÞ,
which is a constant independent of h: To exploit this property of wa4 in further analysis, we expand

gðh;Xt;xðhÞÞ :¼ ga4ðh;Xt;xðhÞÞ at ðT ; bÞ:

gðh;Xt;xðhÞÞ ¼ gðT ; bÞ þ og
ot

ðT ; bÞ hð � T Þ þ
Xd
r¼1

og
oxr

ðT ; bÞ X r
t;xðhÞ

	
� br




þ 1

2

Xd
r1;r2¼1

o2g
oxr1oxr2

ðT ; bÞ X r1
t;xðhÞ

	
� br1



X r2
t;xðhÞ

	
� br2




þ 1

2

o2g
ot2

ð#;Xt;xðhÞÞ hð � T Þ2 þ
Xd
r¼1

o2g
otoxr

ðT ; g1Þ hð � T Þ X r
t;xðhÞ

	
� br




þ 1

6

Xd
r1;r2;r3¼1

o3g
oxr1oxr2oxr3

ðT ; g2Þ X r1
t;xðhÞ

	
� br1



X r2
t;xðhÞ

	
� br2



X r3
t;xðhÞ

	
� br3



; ðA:9Þ

where # is a time between h and T and g1 and g2 are points between Xt;xðhÞ and b:
Then, using Corollaries A.1 and A.3, we obtain

Z tþh

t

ðt þ h� hÞ4

24
Ega4ðh;Xt;xðhÞÞwa4ðh;Xt;xðhÞÞdh

¼
Z tþh

t

ðt þ h� hÞ4

24
gðT ; bÞwa4ðt; xÞ

"
þ og

ot
ðT ; bÞðh� T Þwa4ðt; xÞ

�
Xd
r¼1

og
oxr

ðT ; bÞ ðTf � hÞwa5ðt; xÞ þ vðr; a4Þwa3ðt; xÞg

þ 1

2

Xd
r1;r2¼1

o2g
oxr1oxr2

ðT ; bÞ ðT
n

� hÞ2wa6ðt; xÞ þ vðr1; a5ÞðT � hÞwa4ðt; xÞ

þ vðr2; a4ÞðT � hÞwa4ðt; xÞ þ vðr2; a4Þvðr1; a3Þwa2ðt; xÞ
o#

dh

þ Eq0ðt; x; hÞ ¼ h5S0ðt; xÞ þ Eq0ðt; x; hÞ; ðA:10Þ
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where S0ðt; xÞ is a linear combination of the functions wa2ðt; xÞ, wa3ðt; xÞ, wa4ðt; xÞ, ðT � tÞwa4ðt; xÞ, hwa4ðt; xÞ,
ðT � tÞwa5ðt; xÞ, hwa5ðt; xÞ, ðT � tÞ2wa6ðt; xÞ, ðT � tÞhwa6ðt; xÞ, h2wa6ðt; xÞ, coefficients in this linear combina-

tion are independent of t, x, and h

Eq0ðt; x; hÞ ¼ E
Z tþh

t

ðt þ h� hÞ4

24
wa4ðh;Xt;xðhÞÞ

1

2

o2g
ot2

ð#;Xt;xðhÞÞ hð
"

� T Þ2

þ
Xd
r¼1

o2g
otoxr

ðT ; g1Þðh� T Þ X r
t;xðhÞ

	
� br



þ 1

6

Xd
r1;r2;r3¼1

o3g
oxr1oxr2oxr3

ðT ; g2Þ

�ðX r1
t;xðhÞ � br1ÞðX r2

t;xðhÞ � br2ÞðX r3
t;xðhÞ � br3Þ

#
dh:

Using the Cauchy–Bunyakovskii inequality and Lemma A.4, we obtain that

E q0ðt;X0;aðtÞ; hÞ
� �2n	 
1=2n

6
Ch5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t � h
p : ðA:11Þ

Thus, we extract the singularity by presenting the integral (A.10) as the sum of the singular part S0ðt; xÞ
and the remainder. The singular part contains singularities of order from one to four, while the remainder
has non-singular terms and terms with singularity of order 1=2: By further expansion of gðh;Xt;xðhÞÞ (cf.
(A.9)), we could also include the singularity of order 1=2 in the singular part making the remainder sin-

gular-free. But for our purposes (i.e., for proving Theorem 2.1) the obtained expression (A.10) is sufficient.

We similarly analyze the other terms in the integral (A.8). Note thatwa1 has singularity of order 1=2 and we
include it in the remainder. So, S0 does not contain any wa1 : Analogously, we consider all the integrals of the

remainder rðt; xÞ. In the case of an integral from t þ h=2 to t þ h, we first take the conditional expectation of the
term likeAwith respect toFtþh=2 in a similar way as above and thenwe repeat the procedure once again taking

the expectation of the product of the conditional expectation and f1=2 (or f 2
1=2Þ: As a result, we obtain an ex-

pression like the right-hand side of (A.10). Thus, Theorem 3.2 on the one-step error is proved.
Appendix B. Proof of the convergence theorem for the explicit method

In this appendix we give a proof of the convergence Theorem 2.1 for the method (2.9), (2.10).

According to (3.9) and (3.10), we have

Rk ¼ EYkrðtk;XkÞj j
with rðt; xÞ from (3.27).

Using the rough estimate (A.7) and the Cauchy–Bunyakovskii inequality, we get straightforward that

(recall that we assume uniform boundedness of the moments EY 2
k Þ:

Rk 6
Kh5

T � tkþ1ð Þ2
; k ¼ 0; 1; . . . ;N � 2: ðB:1Þ

But to prove (2.11), a more accurate estimate of Rk is needed. We obtain such an estimate using Theorem

3.2.

Lemma B.1. We have

Rk 6
Kh5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

p ; k ¼ 0; . . . ;N � 2; ðB:2Þ

where K is independent of k and h:
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Proof. Note that we use the same letters C and K for different constants which are independent of h and k.
By Theorem 3.2 and the Cauchy–Bunyakovskii inequality, we obtain

Rk ¼ EYkrðtk;XkÞj j ¼ EYk h5Sk
��� þ qðtk;Xk; hÞ

���6 h5 EYkSkj j þ Ch5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

p ; ðB:3Þ

where Sk :¼ Sðtk;XkÞ, Sðt; xÞ and qðt; x; hÞ are from (3.27). Recall that Sk has singularity of order two, more

precisely

E Sk½ �2
	 
1=2

6
C

T � tkð Þ2
:

Let Fi :¼ F ðti�1; ti�1=2; ti;Xi�1;Xi�1=2;XiÞ be the function defined by the method (2.10) (see also (3.11)), i.e.,

the last line of (2.10) for k ¼ i� 1 can be written as

Yi ¼ Yi�1 þ hFi:

Introduce Sk;i :¼ E SkjFtið Þ, i < k: Due to Theorem 3.2 and Corollary A.1, Sk;i is a linear combination of

wa2ðti;XiÞ, wa3ðti;XiÞ, wa4ðti;XiÞ, ðT � tkÞwa4ðti;XiÞ, hwa4ðti;XiÞ, ðT � tkÞwa5ðti;XiÞ, hwa5ðti;XiÞ, ðT � tkÞ2wa6

ðti;XiÞ, ðT � tkÞhwa6ðti;XiÞ, h2wa6ðti;XiÞ, coefficients in this linear combination are independent of tk, ti, x, and h.
Consequently (cf. (A.5) with l ¼ 0)

E Sk;i½ �2
	 
1=2

6
C

T � tið Þ2
:

We see that though Sk;i has the same order of singularity as Sk, the singularity is shifted. Roughly

speaking, Sk;i is less singular than Sk;iþ1: Also note that E Sk;ijFti�1

� �
¼ Sk;i�1 since waj are martingales (see

Corollary A.1).

We fix k > 0 and consider Bi :¼ EYiSk;ij j, i ¼ k; k � 1; . . . ; 1:

Bi ¼ EYiSk;ij j ¼ EYi�1 1½j þ hFi�Sk;ij6 EYi�1Sk;i�1j j þ h EYi�1FiSk;ij j: ðB:4Þ
We expand the terms, which form Fi, at ðT ; bÞ up to terms of first order, i.e., we write Fi as a constant plus

a remainder consisting of products of f ðt; xÞ, some its derivatives and X r
j � br or tj � T with j ¼ i, i� 1=2,

or i� 1. Then, using the Cauchy–Bunyakovskii inequality and Lemma A.4, we get:

EYi�1FiSk;ij j6K EYi�1Sk;ij j þ C

T � tið Þ3=2
¼ K EYi�1Sk;i�1j j þ C

T � tið Þ3=2
:

Hence, due to (B.4), we obtain

Bi 6Bi�1 þ KhBi�1 þ
Ch

T � tið Þ3=2
; i ¼ k; k � 1; . . . ; 1; ðB:5Þ

where B0 is evidently a constant.

Therefore,

Bk 6 1ð þ KhÞkB0 þ 1ð þ KhÞk�1 Ch

T � t1ð Þ3=2
þ 1ð þ KhÞk�2 Ch

T � t2ð Þ3=2
þ � � �

þ Ch

T � tkð Þ3=2
6B0 e

KT þ CeKT h
Xk
i¼1

1

T � tið Þ3=2
6

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

p ; ðB:6Þ

which together with (B.3) implies (B.2). �
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Remark B.2. It is possible to prove that Rk 6Kh5; k ¼ 0; . . . ;N � 2, with the constant K independent of h
and k: But we restrict ourselves here to the estimate (B.2) since it is sufficient for proving Theorem 2.1 and is

obtained by less efforts than it would be needed for a more accurate estimate.

Since the operator L is not defined at t ¼ T , we need a separate analysis of the error on the last step RN�1.

It is true that RN�1 6Kh5 but for our purposes it is enough that

RN�1 6Kh4; ðB:7Þ

where K is independent of h: We omit the proof of (B.7) here.

Now we are in position to prove the convergence theorem.

Proof of Theorem 2.1. Lemma B.1, estimate (B.7) and the relations (3.8), (3.9) imply

EY0;a;1ðT Þ
��� � E�Y0;a;1ðT Þ

���6 XN�2

k¼0

Kh5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

p þ Kh4:

Since
PN�2

k¼0
hffiffiffiffiffiffiffiffiffiffi

T�tkþ1

p 6C, we get

EY0;a;1ðT Þ
��� � E�Y0;a;1ðT Þ

���6Kh4;

i.e., we have proved that the method (2.9), (2.10) is of order four. �
Appendix C. Proof of the convergence theorem for the implicit method

This appendix contains the proof of convergence of the implicit Runge–Kutta method (4.1), (4.2).

Proof of Theorem 4.1. In the method (4.1), (4.2), the approximation �Y ðtÞ is evaluated at t ¼ tk, k ¼ 1; . . . ;N ,

while X ðtÞ is simulated at t ¼ tkþ1=2 and X ðtkÞ is not used in the algorithm. Due to this reason, we cannot

directly make use of relations like (3.8), (3.9) to prove convergence of the method (4.1), (4.2). To overcome
this difficulty, we consider the other algorithm:

X ðtkþ1=2Þ ¼ X ðtkÞ þ
h
2

b� X ðtkÞ
T � tk

þ
ffiffiffi
h
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1=2

T � tk

r
nkþ1=2; k ¼ 0; . . . ;N � 1;

X ðtkþ1Þ ¼ X ðtkþ1=2Þ þ
h
2

b� X ðtkþ1=2Þ
T � tkþ1=2

þ
ffiffiffi
h
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � tkþ1

T � tkþ1=2

s
nkþ1; k ¼ 0; . . . ;N � 2; X ðtN Þ ¼ b;

ðC:1Þ

and Yk, k ¼ 0; . . . ;N � 1, are simulated by the same formulas as in (4.2) (or, what is the same, (4.3)). In

(C.1), nkþ1=2 and nkþ1 are d-dimensional random vectors which components are mutually independent

random variables with standard normal distribution Nð0; 1Þ:
Since X ðtÞ is simulated exactly both in (4.1) and (C.1) and, in particular, X ðtkþ1=2Þ from (4.1) have the

same distributions as their counterparts in (C.1), it is clear that the estimate (4.4) for the algorithm (C.1),

(4.2) implies this estimate for (4.1), (4.2). At the same time, due to the presence of X ðtkþ1Þ in (C.1), we can

make use of relations like (3.8), (3.9) to estimate the error of the algorithm (C.1), (4.2). In what follows, we

prove (4.4) for (C.1), (4.2).
We write the global error of (C.1), (4.2) in the form (3.8), (3.9) and introduce the one-step error of (C.1),

(4.2) as in (3.10):
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rðt; xÞ :¼ Euðt þ h;Xt;xðt þ hÞÞ�Yt;x;1ðt þ hÞ � uðt; xÞ: ðC:2Þ

We rewrite (4.3) on a single step and expand it as

�Yt;x;1ðt þ hÞ ¼ 1þ hf1=2 þ
h2

2
f 2
1=2 þ q; ðC:3Þ

where f1=2 :¼ f ðt þ h=2;Xt;xðt þ h=2ÞÞ and the random variable q is such that

Eq2
� �1=2

6Ch3: ðC:4Þ

We substitute (C.3) in (C.2) and then expand the terms in the obtained relation using (3.5), (3.6) as we
did in the proof of Theorem 3.2 (see pp. 7–9). In fact, the expansions are simpler here since we are proving

the second order of convergence only. Then, taking into account that uðt; xÞ is a solution of (3.4), we arrive

at

rðt; xÞ ¼ �
Z tþh

t

ðt þ h� hÞ2

2
EL2ðfuÞðh;Xt;xðhÞÞdhþ h

Z tþh=2

t
ðt þ h=2� hÞEL2 fuð Þðh;Xt;xðhÞÞdh

þ hEf1=2

Z tþh

tþh=2
ðt þ h� hÞL2uðh;Xt;xðhÞÞdhþ

h2

2
Ef 2

1=2

Z tþh

tþh=2
Luðh;Xt;xðhÞÞdh

þ Euðt þ h;Xt;xðt þ hÞÞq: ðC:5Þ

Using Lemmas 3.1 and A.4 (cf. the proof of Theorem 3.2), we obtain that the one-step error of the

method (4.1), (4.2) can be written in the form

rðt; xÞ ¼ h3Sðt; xÞ þ E~qðt; x; hÞ; ðC:6Þ

where Sðt; xÞ is a linear combination of the functions wa2ðt; xÞ, coefficients in this linear combination are

independent of t, x, and h; ~qðt; x; hÞ is such that

E ~qðt;X0;aðtÞ; hÞ
h i2n� �1=2n

6
Ch3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � t � h
p

with a constant C independent of t and h: We see that Sðt; xÞ in (C.6) and, consequently, the one-step error

rðt; xÞ, has singularity of order one.

Further, using arguments similar to those in the proofs of Lemma B.1 and Theorem 2.1 (in fact, due to

the lower order of convergence and lower order of singularity, much simpler calculations are needed here),

we obtain (4.4). �
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