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Abstract

Numerical integration of stochastic differential equations together with the Monte Carlo technique is used to
evaluate conditional Wiener integrals of exponential-type functionals. An explicit Runge-Kutta method of order four
and implicit Runge-Kutta methods of order two are constructed. The corresponding convergence theorems are proved.
To reduce the Monte Carlo error, a variance reduction technique is considered. Results of numerical experiments are
presented.
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1. Introduction

We consider Wiener integrals

g= / F(x() dyd? (x) (L1)

d
C(J.a: T.b

of the exponential-type functionals

F(x(-)) = exp [/OTf(t,x(t))dt]. (1.2)
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Here 7 (x) is a conditional Wiener measure which corresponds to the Brownian paths Xofgb(t) with fixed
initial and final points, i.e., it corresponds to the d-dimensional Brownian bridge from « at the time 1 = 0
into b at the time ¢ = T. The integral (1.1) is understood in the sense of Lebesgue integral with respect to the
measure g (x) and is taken over the set C§, ., of all d-dimensional continuous vector-functions x(¢)
satisfying the conditions x(0) = a, x(T) = b (see, e.g. [4]).

A relation of such integrals with quantum physics and some equations of mathematical physics can be
found, e.g., in [2-4,9,13]. In particular, the Feynman path integral of the form

5= / exp ( /0 [@ - V(x(t))] dt) Px(t)

is equivalent to the integral (1.1), (1.2) with /' = —V.

Numerical evaluation of Wiener integrals is an important and difficult task. Many approaches are
proposed for solving this problem (see, e.g. [1,2,15] and references therein). As a rule, the known numerical
methods reduce a path integral to a high dimensional integral which is then approximated using either
classical or Monte Carlo methods. The high dimensionality of these integrals makes calculation of the
Wiener integrals extremely difficult.

In [5,10,14], the approach using numerical integration (in the weak sense) of stochastic differential
equations with application of the Monte Carlo technique is proposed for computation of Wiener integrals
of the form

I = [ Fx()dugo(x), (1.3)

d
CO;O

where f1,0(x) is a Wiener measure corresponding to Brownian paths with the fixed initial point (0,0),
F(x(+)) = ox(T), fOTf(t,x(t)) dr), and ¢(x,z) is a function of d 4+ 1 arguments from a sufficiently wide class.
The approach is based on the following probabilistic representation of the integral (1.3):

I =Ep(Xoo(T),Zoo0(T)), (1.4)

where Xo0(t), Zooo(t), 0<t< T, is the solution of the (d + 1)-dimensional system of stochastic differential
equations (SDEs)

dX = dW(t), XO,O(O) = 0,

1.5
dz :f(l‘,Xl,...,Xd)dl‘, ZQQ()(O) =0, ( )
and w(t) = (w'(¢),...,w!(r))" is a d-dimensional standard Wiener process.

An efficiency of this approach is due to the fact that the system (1.5) has the fixed dimension d + 1 and
the corresponding accuracy is reached by means of a choice of a method and a step of numerical integration
and a number M of Monte Carlo simulations. Thus, the problem of calculating the infinite-dimensional
Wiener integral .# is reduced to the Cauchy problem (1.5). This problem can naturally be regarded as one-
dimensional since it contains only one independent variable. We underline that in other methods the path
integral is reduced to a high dimensional Riemann integral and the accuracy is reached by increasing its
dimension. The approach based on the probabilistic representation (1.4), (1.5) is especially effective for
evaluating Wiener integrals (1.3) in the case of exponential-type functionals because in this case there are
fourth-order Runge-Kutta methods [5,10].

Here the approach of [5,10,14] is developed for evaluating the conditional Wiener integral (1.1), (1.2).
The corresponding probabilistic representation contains a more complicated system than (1.5). The solu-
tion of this system gives a Markov representation of the Brownian bridge. The system is singular and this
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circumstance stipulates a certain complexity of theoretical proofs. Nevertheless the constructed fourth-
order Runge—Kutta algorithms are equally simple and effective as in the case of the Wiener integral (1.3).
The effectiveness of these algorithms allows us to evaluate integrals (1.1), (1.2) for a large dimension d.

In this paper, we restrict ourselves to conditional Wiener integrals of exponential-type functionals al-
though the approach can also be applied to conditional Wiener integrals of functionals of an integral type
(cf. [14)).

In Section 2, a fourth-order explicit Runge—Kutta method is constructed. Its one-step error is analyzed
in Section 3. Implicit methods of order two are derived in Section 4. These methods have an implicitness
with respect to the linear part only which is easily analytically resolved. In our approach, there are two
types of errors: the error of numerical integration and the Monte Carlo error. To reduce the Monte Carlo
error, the method of control variates is considered in Section 5. Some numerical tests are presented in
Section 6. A summary of the obtained results is given in Section 7. Proofs of convergence theorems can be
found in the appendix.

2. Explicit Runge-Kutta method of order four

As it is known [7,8], the d-dimensional Brownian bridge X (f) = Xo(t) = X;.’(t), 0<¢< T, from a to b
can be characterized as the pathwise unique solution of the system of SDEs

b—X
dx = T tdt+dw(r), 0<t<T, X(0)=aq, (2.1)
with
X(T)=b, (2.2)
where w(t) = (w'(¢),...,w(t))" is a d-dimensional standard .7 ,-Wiener process. The system is considered

on a probability space (Q, 7,P), and #,, 0<t< T, is a non-decreasing family of g-algebras of 7.
Let us also introduce the scalar equation

dY = f(t,X(£)Ydt, 0<t<T, Y(0)=1, (2.3)

where X (¢) is defined by (2.1), (2.2) and f(¢,x) is the same as in (1.2). Then the Wiener integral (1.1), (1.2) is
equal to

7 = EY(T). (2.4)

Thus, evaluation of the Wiener integral (1.1), (1.2) is reduced to the problem of numerical integration of
the system (2.1)—(2.3).

Introduce a discretization of the time interval [0, 7], for definiteness the equidistant one with a time step
h>0:

t,=kh, k=0,....N, ty=T,

and let lev1)2 = U + h/2
To get a higher order method for (2.1)—-(2.3), we need to simulate the solution of (2.1) exactly. The
solution of (2.1) is

T;t+b%+(r—z)/o C;W_(Sz. (2.5)

Xt)=a
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Hence
b—X(t) " dw(s)
X h =X h———=4+ (T —t—h . 2.6
(141 =X+ b 20 (o) [ 7 26)
We have
t+h
E{(T—t—h)/ (;W_(Sz X(I)} —0,
ot dw(s) ? h @7
- on [ 2o = (1- 4
; T—s T—t
We can exactly simulate the solution of (2.1) by a simple recurrent procedure based on the formula
- X T —t—
X(t+h)=X(t) +hbT7_(:)+h1/2 T—t_thf, t<T, (2.8)

where ¢ is a random vector which components are Gaussian random variables with zero mean and unit
variance and they are independent of X (¢).

Now let us formally apply a standard deterministic explicit fourth-order Runge-Kutta method to Eq.
(2.3) assuming that X (¢) is a known function. Then, taking into account (2.8), we obtain the following
algorithm for integrating the system (2.1)—(2.3):

X(0) =a,
hb—X(t 2T —t
X(tlc+1/2) :X(tk) " (k) k+1/2

— k=0,....N—1
+2 T—lk \/z T—tk ék+l/2, ) ’ )

2.9)
hb—X(t1p) W2 [T —t4 (
X(te) =X (¢ o, k=0,...,N—2,
(tes1) (k+1/2) 2 T ter1)2 \/§ T — tzm/zékﬂ
X(ty) = b,
YO = 17
k= f(te. X)) Ye, ko = f(tivr2, X (tei12)) [Ye + hky /2],
ks = [ (tis1y2 X (t12)) [Ye + Mo /2], kg = f(trer, X (t001)) [Ye + hks], (2.10)

h
n+1:n+6(k1+2k2+2k3+k4), k=0,...,.N—1,

where & 1/2, &1 are d-dimensional random vectors which components are mutually independent random
variables with standard normal distribution .47(0, 1).

Since the function X (¢) is non-smooth, the deterministic result on the accuracy order of the involved
Runge-Kutta method is not applicable here and a separate convergence theorem is needed. The following
theorem is proved under some assumptions on the function f'(¢,x) (see them after (3.4)). Its proof is based
on a thorough analysis of the one-step error which is made in the next section and in Appendix A. The
proof of the convergence theorem itself is given in Appendix B.

Theorem 2.1. The method (2.9), (2.10) applied to evaluation of the Wiener integral (2.4) is of fourth order of
accuracy, i.e.,

| — EYy| = [EY(T) — EYy| <KH", (2.11)

where the constant K is independent of h.
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3. Theorem on one-step error

In this section, we consider a one-step error of the method (2.9), (2.10).

We say that a function g(s,x), s € [0, 7], x € RY, belongs to the class F (with respect to the variable x),
written as g € F, if there are constants K > 0 and x > 0 such that for all x € R the following inequality
holds uniformly in s € [0, T):

g5 )| < K(1+ ). (3.1)
Introduce the operator

T
L:g_‘_ bxa

—— < . .
T » 0st<T (3.2)

We observe that this operator contains singularity since the denominator 7 — ¢ tends to zero as ¢ goes to 7.
Consider the function

u(t,x) = EY, . 1(T). (3.3)
It satisfies the Cauchy problem
Lu+fu=0, 0<t<T, xeR?Y u(T,x)=1. (3.4)

We assume that the function f(z, x) is sufficiently smooth, belongs to the class F together with its partial
derivatives of a sufficiently high order and is such that the problem (3.4) has a unique solution which is
sufficiently smooth and belongs to the class F together with its partial derivatives of a sufficiently high
order. In addition, we suppose that EY?(¢) exists and bounded on [0, 7] and that for all sufficiently small 4
the second moments EY? are uniformly bounded with respect to 4. For instance, the latter conditions are
satisfied when the function f(¢,x) is bounded. Therefore, theoretically, we can use Theorem 2.1, approx-
imating f(z,x) (if it is unbounded) by an appropriate bounded function.

Let g be a sufficiently smooth function belonging to the class F together with its partial derivatives up to
a sufficiently high order. Then the expectations for a nonnegative integer m

EL'g(0,X(0)), 1=0,1,...,m+1,

2
E<§L1g(9,X(9))> ., 1=0,1,....m, i=1,...,d,
xl

exist and are continuous with respect to 0<0 < 7. And the following formulas are also valid for
t<s<t+h<T:

Blg(0-+ h X1 M)IF) = gl Xea(9) 1+ 5= )l o)+ s )
+ [ g0, 501, 00, 65)

hm
Eg(t + ha)(t,x([+ h)) = g(t7x) + th(tvx) + - +%ng(tax)

t+h . m
+ / Uk =0 prmiig(0, x,.(0))do. (3.6)
t

m!
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The expansions (3.5) and (3.6) are analogous to an expansion of semigroups. Their proof is available in

[10, p. 137].

It is convenient to introduce the additional notation for the approximation defined by (2.10):
You1(ty) = Y, and also Y., (¢), ¢ > s, by which we mean the approximation of (2.3) started from y at t = s
with X (s) =

It is not difﬁcult to see that

Yt,x,y(t + t/) = er,xJ (t + t/)a Z‘A,X,y(tk-%—k’) = sz‘k,XJ (tk+k’)7 EYI,X-,y(T) = yEYt,x.,l (T> = W(tax)7 (37)

where u(z,x) is the solution of the problem (3.4).
Recall that 7y = 0, Xp = a, ¥ = 1. Using (3.3) and (3.7) and the fact that we simulate X; = X(#,) exactly,
we can represent the global error of the method (2.9), (2.10) (cf. (2.11)) in the form

EYyo1(T) = EXo1 (T)| = B,y (T) = EYy| = lu(to, Xo) Yo — Eulty, Xu) Y|

N-1

> [Eu 1, X (1)) Eu(fk+1,X(tkﬂ))yrk,xﬂk(fkﬂ)}‘
k=0
1

sz[ te X (1)) — ulter, X () i (1)

N—-1
‘EYk[ u(ti, X () — u(tesr, Xy x, (1)) Yy (fk+1)” (3.8)
k=0
We have
Re 1= | EYe [t X (1) =t Xy (000) Vo ()|

= ’EYkE [u(l‘k,Xk) — u(tei1, Xy x, (te1)) Yo x (tk+1)"g;tk:| .

(3.9)
First, we analyze R, for k =0,...,N — 2. To this end, we consider the one-step error for 0<t < T — h:
r(t,x) == Eu(t + h, X, (t + 1)) Y1 (1 + h) — u(t,x). (3.10)

We rewrite (2.10) on a single step in the form:
Tt ) = 1+ (4461 + )+ (R + 130+ i)

Jrﬁ(fOff/z +f12/2f1) +ﬁﬁ)f12/z,f]1 (3.11)
where fo := f(t,x), fip:=f(t+h/2,X,,(t+h/2)), and fi := f(t + h, X, .(t + })).
Using (3.6), we get

n? h? h*
Eu(t 4+ h, X, .(t + h)) = u(t,x) + hLu(t,x) + ?Lzu(t,x) + €L3u(t,x) + ﬁL“u(t,x)

t+h 0\
+ / RO prsu(o,x,.0)) o, (3.12)
t
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Efou(t + h, X (t + h)) = foEu(t + h, X, (¢t + h))

" n
u(t,x) + hLu(t,x) + = L*u(t,x) + —Lu(t,x)

= /o 2 6

t+h )3
+ [ EEEED o x|, (3.13)
t

Efiu(t + h, X,.(t + h)) = fou(t,x) + hL( fu)(t,x) + %Lz(fu)(t,x) + %L3(fu)(t,x)

+ /Hh MEL“(fu)((),XM(Q))dH. (3.14)

6
Further,

Efipu(t + h, X, (t + h)) = E(fi pE[u(t + h, X, (t + )| F 142) )

and by (3.5) we obtain
h
Eu(t+ h, X, (t + h)|F ] = u(t +h/2,X,:(t + h/2)) + ELu(t +h/2, X, (t+h/2))

2 3
+ %Lzu(t +h/2, X, (t+h/2)) + il—gﬁu(t +h/2, X, (t+h/2))

“h(t4+h—0)°
[ 0,6, (0)1 )0,
t+h/2

then

2 3
Efy i+ X4 ) = fout,x) + 3 LO)00) 4 L) (1) + 5 L))

t+h/2 — 3

N / B2 O s 1y (0,,,(0)) 40+ foLue, )
t 6 2

5 3

4 %L(ﬂu)(i,x} + %Lz(ﬂu)(t,x)

; / W2 (4 h/2 - 0)
t

o 2O 12 a0 0.,.(6)) 40+ foute. )

2

3 t+h/2
+ %L(ﬂzu) (t,x) + < / (t+h/2—0)EL*(fL?u)(0,X,.(0))d0

3 pih/2

h3
+ghlun) + g [ EL(Lu)(0,X.(0)d0

ot h—0)
s [ . 0) o (3.15)
t+h/2
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Analogously, we get
2
Efofysut + h X1+ 1)) = fu(t,3) + 2 LG x) 5 () 1)

t+h/2 )2
+f0/ M#ELSUF”)(QXLX(@))dH+gf02Lu(t,x)

2 t+h/2
LU0 43 [ 4 b2 OEL(fL)(0,X,,(0)) do

2

2 t+h/2
+ §f§L2u(t, x) + §fo /t EL(fL*u)(0,X,.(0))d0

t+h _ 2
+f0Efl/2/ M

L*u(6,X,,(0))do, (3.16)
t+h/2 2

Eflz/zu(t +h X (t+h) = flu(t,x) + gL(fzu) (t,x) + %sz (fzu) (t,x)

+h)2 _ 0)?
N / W EL3(f2u)(9,X,‘x(0))d9+gf02LM(t,x)

72 PRI
L L) (x) / (64 /2 — 0)EL(£Lu) (0, X,..(0)) dO

e 2 t+h/2
o SRLutx) + / EL(f*L*u)(0,X,+(0)) d0
t

t+h )2
LEPR, / U =07 15,9, x,,.(0)) do, (3.17)
/ t+h/2 2 '

2
Efypafiai b Xeoli 1)) = f3u(t,3) + 3 L(7u)(63) + 12 () (1)

t+h/2 _ p)?
n /, WEE (fzu)(G,)(,J(H))dG+gf0L(fu)(t7x)

2 t+h/2
FRLOLN ) +5 [ (e b2 = OBL(L(i0)(0.X,(0) 0

2 t+h/2
—i—%foLz(fu)(t,x)—i—%/t EL(fL*(fu))(0,X,.(0))do

t+h —n\2
wfin [ L0500 d0 (3.18)

t+h/2
Efoflz/zu(t + h, X (t + h) = fu(t,x) + gfoL(fzu) (¢,x) +fo/ (t+h/2—0)EL*(f*u)(0,X,.(0))do

h s t+h/2 5
+§f0Lu(t,x) +§f0/ EL(f?Lu)(0,X,(0))d0

t+h

FAES [ (4 h = 0)Lu(0,X,.(0) 0, (3.19)

t+h/2
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h t+h/2
Emﬂmo+hjh@+m):ﬁﬂnn+§uﬁﬂoﬁy+/ (t+h/2— 0)EL*(fu)(0,X,.(0))d0
t
h h t+h/2
FRRLR) 43 [ (L) 0. X.(0)d0
t

+Ef2, / b= O () (0.X,.(0)) do. (3.20)

12

t+h/2
Efoflz/zflu(t+h,)(t,x(f+ h)) = fou(t,x) +fo/ EL(f*u)(0,X,,(0))do0

t+h

T IES, / L(fi)(0,X,,(0)) do. (3.21)

t+h/2

Substituting (3.11)—(3.21) in (3.10), we obtain
h2
r = h[Lu + fu] +E

[L2u+ L(fu) + fLu+ f*ul +h£ [L2u+ L2(fu) + fLPu + fL(fu)
+ L(fLu) + L(f*u) + f*Lu + f*u] +§[L4u + L (fu) + fLu+ fL*(fu) + f2L%u + 2L fu)

L S L) + L) + L) + L) + LUL2) + LUL(fa))
+L(f*Lu) + L(f*u)] +F, (3.22)

where all the operators and functions are evaluated at the point (¢,x) and 7 accumulates all the integrals
present in (3.12)—(3.21) multiplied by 4 to the corresponding power. Taking into account that u(¢, x) satisfies
the equation from (3.4), we get

r(t,x) = ?(tvx)' (323)

If the terms in the one-step error r(¢,x) of the method (2.9), (2.10) (i.e., the terms in 7) were bounded by
K(x)h, K(x) € F for all < T — h, the relations (3.8)~(3.10) would imply that S>> R, < Ch*, where C is
independent of 4. But we see that the one-step error consists of integrals with integrands containing terms
of the form A(t,x) = L"(q1L'q>)(¢,x), where g;(¢,x) and g,(¢,x) are some functions from the class F. The
functions A(¢,x) belong to the class F for ¢ € [0, 7.], where 7. < T is a fixed (independent of %) time
moment. Then |r(¢,x)| < K(x)h°, K(x) € F, t € [0, T.], with K(x) depending on T.. However, the functions
A(t,x) do not belong to the class F for ¢ € [0, T) due to the singularity in L (see (3.2)). Consequently, r(z, x)
can not be bounded by K (x)4°, K(x) € F for all # < T, and a more detailed analysis of the one-step error is
required to prove the convergence theorem. In particular, we need to consider the structure of the
functions A(#,x) in detail. We always assume that L° is an identity operator. The following lemma is
proved by induction.

Lemma 3.1. Let q,(t,x) and q,(t,x) be sufficiently smooth functions belonging to the class ¥ together with their
partial derivatives of a sufficiently high order. Then for 0 <t < T

L'(qL'g)(t,x) = go(t,x) + Y > g (W (tx), Ln=0,1,..., m=1+n, (3.24)
=1y
where a; is a multi-index such that o; = (iy,...,i;) and each iy is from {1,...,d}, the summation in (3.24) is

over all possible values of o;, g and g, are some functions from the class ¥, and
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b —x
"= =1,...,d
lﬁ T _¢° r ) )
N . (3.25)

o AL SAL . . . .. .

W’/Al:ﬁlﬁ/—Faxrlﬁ ) O‘j:(lla"'7lj)7 OCj+1:(117-~'aljalj+1)a]:1527"'7
and for all a;

Ly® = 0. (3.26)

Using specific properties of the functions y*, the following theorem on one-step error is proved in
Appendix A.

Theorem 3.2. The one-step error of the method (2.9), (2.10) can be written in the form
r(t,x) = #(t,x) = B°S(t,x) + Ep(t,x; h), (3.27)

where S(t,x) is a linear combination of the functions Y™ (¢,x), Y™ (¢,x), y™(t,x), (T — )™ (¢,x), hp™(z,x),
(T — W™ (t,x), ™ (1,x), (T — )" (¢,x), (T — )’ (1, x), K™ (t,x), coefficients in this linear combination
are independent of t, x, and h; p(t,x; h) is such that

Ch®

(Bl Xaaosmr™) ™ <

, t+h<T,

with a constant C independent of t and h.

We should emphasize that the most important part of this theorem consists in the equality r(¢,x) = 7(z, x)
which is due to Eqgs. (3.10)—(3.22). Theorem 3.2 is a basis for the proof of Theorem 2.1 on the global error of
the method (2.9), (2.10) (see Appendix B).

4. Implicit Runge—Kutta methods

From the point of view of possible applications, the most interesting case is when the function f is
bounded from above, for example, when f is negative. In this case, the explicit Runge-Kutta method from
Section 2 may cause some computational problems since, for instance, Y;,; in (2.10) can become a large
negative number while the exact Y (¢) is always positive. Apparently, this may occasionally lead to some
instabilities and require a very small time step to achieve a reasonable accuracy. In such a situation an
implicit method can behave better.

Let us formally apply the deterministic midpoint method to (2.3) provided X(¢) is a known function. As
a result, we obtain

h h [T —h/2
X2 —as it /51/2,

4.1
b—X(t_ —t
X(tiz12) = X(tez1)2) -&-hM Vh kﬂ/zf/m/z, k=1,....,N -1,
T—Z‘k,l/z T — 1/2
Yo =1,
Y + Yot (4.2)

Yigr = Yo + hf (te1)2, X (tri12)) 5
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where &1/, k=0,...,N — 1, are d-dimensional random vectors which components are mutually inde-
pendent random variables with standard normal distribution .47(0, 1).
Resolving the implicitness in (4.2), we get

L 3/ (o, X (th112))

Y1 =Y, .
SR B (tkr1ja, X (ter2))

(4.3)

To ensure that the denominator in (4.3) does not vanish for all sufficiently small 4, we should require that
the function f(¢,x) is bounded from above, i.e., that f(¢,x) < ¢ for all (¢,x), ¢ is a constant. In this case, for
all sufficiently small # the denominator in (4.3) is positive. If f(¢,x) <0, then —1 < ¥, <1 for all .

We prove the convergence theorem for the method (4.1), (4.2) under the same assumptions as in Section
3 (see p. 5). Note that in the case of f(#,x) <0, the condition EY? < C is satisfied due to the uniform
boundedness of the random variables Y.

Theorem 4.1. The method (4.1), (4.2) applied to evaluation of the Wiener integral (2.4) is of second accuracy
order, i.e.,

|7 — EYy| = [EY(T) — EYy| < KR, (4.4)
where the constant K is independent of h.
The proof of this theorem is given in Appendix C.

If we formally apply the deterministic Gauss method of order four (see, e.g. [6, p. 71]) to (2.3), assuming
that X(¢) is a known function, we obtain

b— T —yh
X(yh) = a + vh T“+\/yh,/ TV £, (4.5)
b—X(yh) T—(1=7y)h
X((1— =X(y 1-2y9)h——————= 1-2 —_— &
(=) =)+ (1 -2 2 (T2 U D0
b—X(l‘k,]—‘r(l—"/)h) T—tk—'))h
X vh) = X (t_ 1—) 2) 2) — &
(tx +7h) (teer + (1 = )h) + 2yh T + V2yh T—tk+yhék+”
b—X(tk+Vh) T—tk+1+'))h
X 1-— =X 1 -2V 1 -2y _— .
(+-(1 =) = X 0) + (1 = 2 KO iy [Tt
k=1, . N—1,
Y0:17
h 1 3
k1 :f(lk+'))h,X(tk+'))h)) Y;{ +Zk1 =+ <Z—%>hk2‘|,
4.6)
1 3 h (
ky =f(ti + (1 =p)h, Xt + (1 = y)h)) | Ve + (ZJF%)hlierz )

h
Yk+1:Yk+§(k1+k2), k=0,...,.N—1,
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where y = % - % and &y, &4py_y, k=0,...,N — 1, are d-dimensional random vectors which components
are mutually independent random variables with standard normal distribution .47(0, 1).
Resolving (4.6) with respect to k; and k,, we get

Yo, =y, LEAUI L) A B )

L+ ) +EAS

where fi := f(t + yh, X (t; + vh)) and f2 := f (& + (1 = )h, X (4 + (1 — p)h)).

The denominator in (4.7) does not vanish for all sufficiently small / for functions f(z,x) being bounded
from above. And if f(¢,x) <0, then —1 < ¥, <1 for all £.

The intuition built on the previous analysis of the methods (2.9), (2.10) and (4.1), (4.2) tells us that the
method (4.5), (4.6) should be of order four. But this assertion turned out to be wrong, the method is of
order two only just as the method (4.1), (4.2). We have not found an implicit method for (2.4) that satisfies
the condition |¥;| <1 for f(#,x) <0 and has the fourth order of accuracy. In this search it was natural to
restrict ourselves to standard fourth-order deterministic implicit methods for ordinary differential equations
as a basis for potentially higher-order implicit methods for (2.4).

Analogously to Theorems 2.1 and 4.1, we prove the convergence theorem.

Theorem 4.2. The method (4.5), (4.6) applied to evaluation of the Wiener integral (2.4) is of second order of
accuracy, i.e.,

|# — EYy| = |[EY(T) — EYy| <KW, (4.8)
where the constant K is independent of h.

Although the methods (4.1), (4.2) and (4.5), (4.6) are of the same order of convergence, in our numerical
tests (see Section 6) the method (4.5), (4.6) gives more accurate results. Apparently, this is due to the fact
that the constant K in (4.8) is, in general, less than its counterpart in (4.4). At the same time, the method
(4.1), (4.2) requires one evaluation of f per step, while (4.5), (4.6) requires two evaluations of f per step.

5. Variance reduction

To evaluate EY(T) in practice, we need to apply the Monte Carlo technique. As a result, in addition to
the error of numerical integration considered in the previous sections, there is also the Monte Carlo error:

EY(T) :% XM:W)(T) + Rune, (5.1)

where M is the number of independent realizations Y™ (T) of Y(T). The Monte Carlo error Ry has zero
bias and its variance equals to

Var(Rue) = Varﬂjm = Varﬂjm n O(L) : (5.2)

i.e., the simulated ¥ := (1/M) 3%, Y")(T) belongs to the confidence interval:

Y € (EY(T) — cy/Var(Rue), EY(T) + cy/Var(Ry)) (5.3)
with the fiducial probability, for example, 0.997 for ¢ = 3 and 0.95 for ¢ = 2.
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Thus, if the variance Var Y(7) is big, a large number of trajectories M has to be simulated in order to reach
a satisfactory accuracy. To reduce the Monte Carlo error, a variance reduction technique can be used. The
basic idea of variance reduction techniques (see [5,10-12]) is to substitute ¥(7) by another random variable
which has the same expectation as Y (T') but a smaller variance. Two variance reduction methods are known:
the method of importance sampling [5,10,11] and the method of control variates [11,12]. A combining
method is given in [11]. The method of important sampling is based on Girsanov’s transformation. In our
case its application changes the linear system (2.1) for X to a system with, in general, a nonlinear drift. As a
result, we lose the advantage of simulating X (¢) exactly and of approximating the conditional Wiener in-
tegral by higher-order numerical integrators from Sections 2 and 4. This shortcoming does not arise in the
case of the method of control variates. That is why, we restrict ourselves here to this method only.

In connection with the evaluation of the Wiener integral (1.1), (1.2) consider the following system of Ito
SDEs (cf. (2.1)-(2.3):

dx = bT __)f de + dw(r), X(s) =x, (5.4)
dY = f(t,X(0)Yde, Y(s) =y, (5.5)
dZ =G (t,X)Ydw(t), Z(s) =z (5.6)

Here Z is a scalar and G (¢, x) is a column-vector of dimension d with good analytical properties, the other
notation is the same as before.
It is clear that

u(s,x) = EY,1(T) = E[Yx1(T) 4+ Zs 11 0(T)].

As it is known [11]

Varlto (1) + Zuaaa(M = 5 [ 72, i(—w)z (57)

i=1
where u(z,x) is the solution of (3.4). Then by choosing G(¢,x) as

; Ou )
G = o j=1,....d, (5.8)
we obtain that the variance of Y, ;(T) + Z;.10(T) is equal to zero.

Applying a numerical method to (5.4)~(5.6), we get the approximate ¥ 1(7T) and Z ., o(T). The variance
Var[Y, . 1(T) + Zo10(T)] is close to Var[Y, .1 (T) + Z,..10(T)], i.e., it is small in the case of G from (5.8), and,
consequently, a smaller number of independent realizations M is needed to have a satisfactory accuracy.

Of course, in practice the solution u(¢,x) is not known. However, an approximate solution # to the
problem (3.4) can be known. In this case we can take G(¢,x) in the form of (5.8) with # instead of u and we
may expect a variance reduction. This is demonstrated in numerical examples (see the next section).

6. Numerical tests

1. We take f(¢,x) in the form
S (&%) = (A1) x,x) + (a1(1), %) + ao(2), (6.1)

where A(¢) is a d x d symmetric matrix, a;(¢) i3 a d-dimensional vector, and ay(¢) is a scalar function.
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Let u(t,x) be the solution of (3.4) with f from (6.1). Introduce the function P(z, x):
u(t,x) = exp(P(t,x)). (6.2)

This function satisfies the problem

1 <N /oP\? .,
LPJr(A(t)x,x)Jr(al(t),x)+a0(t)+2;<axl,) =0, xeR" r<T, P(T,x)=0. (6.3)
We look for a solution of (6.3) in the form
1
P(t,x) = 5 (P(1)x,x) + (p(1), %) + 4 (1), (6.4)

where P(¢) is a d X d symmetric matrix, p(¢) is a d-dimensional vector, and ¢(¢) is a scalar function.
Substituting (6.4) in (6.3) and collecting terms (-x,x), (-,x) and terms independent of x separately, we
arrive at the system for P(¢), p(¢), and ¢(¢):

P (1) —%PHA(;) +PXt)=0, P(T)=0, (6.5)
pt) — %p + %P(r)b +P(t)p+a(t)=0, p(T)=0, (6.6)
4(0) + 7 (1), B) + 5 P(0) + 3 (p(0) p(0) +an(t) = 0, g(T) = 0. (67)

Note that if a;(¢) = 0 and b = 0, then p(¢) = 0. And if in addition ay(¢) = 0, then

q(t):% / trP(s) ds.

The solution of (6.5) can be expanded in (positive) powers of T — t. If A(¢) is a constant matrix 4, then
this formal expansion starts with the terms
2 4 3
Pit)=ZA- (T —t)+—A4 - (T—1) +---.
() =34 (T =)+ o (T 1) +
For test purposes, it is convenient to have an exact solution of (6.5)—(6.7) in a closed analytical form. To
this end, we choose a variable matrix A(¢) such that

A(f) = 4 _§A2 (T =1, (6.8)

where A is a constant symmetric matrix. Then the exact solution of the system (6.5)—(6.7) with b =0,
ap(t) =0, and a,(¢) = 0 has the form

P =304, p=0. g()=""Lira (69

Consequently, the solution of (6.4) is

T — T
P(t,x) = Tt (4x, %) + trA. (6.10)
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Then the conditional Wiener integral (1.1), (1.2) for f from (6.1) with @y = 0, a; = 0, A(¢) from (6.8) and
for a=5b =0 is equal to

T2
J =u(0,0) =exp (KtrA)
In our experiments we take the dimension d = 4 and the following matrix 4:

1 05 0 0
05 2 05 0
A=1 0 _o5 -2 —05]| (6.11)

0 0 -05 1

for which tr4 = 0.

In Table 1, we give results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1)
with ap =0, a; =0, A(¢) from (6.8), (6.11) and for a = b =0, T = 1 by the explicit Runge-Kutta method
(2.9), (2.10) and the implicit Runge-Kutta methods (4.1), (4.3), and (4.5), (4.7). As it was mentioned in
Section 5, we have two types of errors in numerical simulations here: the error of a method used and the
Monte Carlo error. The results in the table are approximations of EY (1) calculated as in (5.1)~(5.3) with
¢ = 2. Note that the “ &7 reflects the Monte Carlo error only and it does not reflect the error of a method.
The results obtained are in agreement with the proved convergence theorems (see also Table 2). Recall that
the implicit methods (4.1), (4.2) and (4.5), (4.6) are both of order two. In our tests the method (4.5), (4.6)
performs better. Apparently, this is due to the fact that the constant K in (4.8) is, in general, less than its
counterpart in (4.4).

We also note that for the considered test problem we do not have any numerical instabilities and the
explicit method is computationally effective. As has been discussed at the beginning of Section 4, implicit
methods should be used in practice when explicit methods are affected by instabilities. A further investi-
gation and tests are required in this direction.

2. To reduce the Monte Carlo error in simulation of the above test problem, we can use the variance
reduction technique from Section 5. For f from (6.1) with @y = 0, a; = 0, A(¢) from (6.8), (6.11) and for
b =0, the solution u(¢,x) of (3.4) has the form (6.2), (6.10). Therefore, in this case the vector function G
defined in (5.8) is equal to

d
G'(t,x) = —%(T —1) exp(P(Lx))ZA"jxj, i=1,...,d, (6.12)
)

where P(¢,x) is from (6.10) and 4 is from (6.11).
Applying the Euler method to Eq. (5.6), we get

Z, =0,
(6.13)
Zk+]:Zk+GT(tk,X)YkAWk, kZI,,N—l

Table 1

The results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1) with ay = 0, a; = 0, 4A(¢) from (6.8), (6.11) and
fora=b=0, T =1 by the explicit Runge-Kutta method (2.9), (2.10) and the implicit Runge-Kutta methods (4.1), (4.3) and (4.5),
(4.7). The exact solution is 1

h M (2.9), (2.10) @.1), 4.3) 4.5), 4.7)
0.2 10 0.9994 £ 0.0013 1.0176 + 0.0044 1.0040 + 0.0013
0.1 108 1.00002 + 0.00013 1.00361 + 0.00015 1.00093 + 0.00013

0.05 108 0.99996 + 0.00013 1.00089 + 0.00013 1.00019 £ 0.00013
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Table 2

The results of simulation of the conditional Wiener integral (1.1), (1.2) for f from (6.1) with ay = 0, a; = 0, 4A(¢) from (6.8), (6.11) and
fora=b=0, T =1 by the explicit Runge-Kutta method (2.9), (2.10) and the implicit Runge-Kutta methods (4.1), (4.3) and (4.5),
(4.7) using the variance reduction technique. The exact solution is 1

) M (2.9), (2.10) @4.1), (4.3) 4.5), (4.7)

0.1 107 0.99977 £ 0.00024 1.00396 + 0.00050 1.00103 £ 0.00023
0.05 107 0.99992 + 0.00017 1.00098 = 0.00017 1.00023 = 0.00016
0.05 108 0.99999 + 0.00005 1.00088 =+ 0.00005 1.00027 £ 0.00005
0.01 107 1.00003 = 0.00007 1.00001 = 0.00007 1.00003 = 0.00007

If we approximate (5.4), (5.5) using the explicit fourth-order Runge—Kutta method (2.9), (2.10), then Y;
in (6.13) is from (2.10) and the Wiener increment is

1/2
Aw :=w(ter) —w(t) = % (Ekpiyn + Ehir)s
where &1, and &, are the same as in (2.9), (2.10).

It is clear that EZ;,; = 0. This implies that the method (2.9), (2.10), (6.13) applying to (5.4)—(5.6) to
approximate the Wiener integral # = EY(T) is of order four, i.e., the above realization of the variance
reduction technique does not affect the accuracy of the numerical method. The variance VarY(T) is
approximated with accuracy O(4). Consequently, for a fixed number of realizations M the Monte
Carlo error in simulations using the variance reduction technique is ~ 1/v/% times less than in
simulations without variance reduction. In other words, in the case of variance reduction the Monte
Carlo error is proportional to v/A/v/M. This is illustrated in Table 2. In particular, we see for & = 0.05
that to produce results of the same quality we need M = 10® independent trajectories without vari-
ance reduction and M = 107 independent realizations in the variance reduction case (compare Tables 1
and 2).

Remark 6.1. Recall that the implicit methods (4.1), (4.3) and (4.5), (4.7) do not contain simulation of
X (#+1), and the random variables involved in these methods are not enough to evaluate the Wiener in-
crements Aw; on the intervals [#,#.]. At the same time, these Wiener increments are needed to realize
(6.13). Thus, to use the variance reduction technique in connection with the implicit methods (4.1), (4.3)
and (4.5), (4.7), we introduce additional random variables and simulation of X (¢, ) in the corresponding
algorithms (see (C.1) in the case of the method (4.1), (4.3)).

3. Now we illustrate the assertion made at the end of Section 5. To this end we take the function f(#,x) in
the form (6.1) with the constant matrix 4(¢) = 4 from (6.11) and gy = 0, a; = 0. We also put b = 0. In this
case, we do not know the exact solution u(¢,x) of (3.4). But for the variance reduction we can use an
approximation #(¢,x) of the solution based on the formal expansion (6.9):

(1, x) = exp (% (P(z)x,x)), (6.14)
where
P(t) = %A (T —1).

Deriving (6.14), we take into account that tr P(¢) = 0 because of the specific choice of the matrix 4 which
is from (6.11).
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Then we take the function G in (6.13) of the form

Putting ¢ = 0 and 7 = 1, we evaluate the corresponding conditional Wiener integral (1.1), (1.2) by the
fourth-order explicit Runge-Kutta method (2.9), (2.10) with time step # = 0.01 and we simulate M = 10°
independent realizations. Without variance reduction, we get: #=1.1536 + 0.0093, while applying the
variance reduction technique (i.e., using the method (2.9), (2.10), (6.13) for (5.4)—(5.6) we obtain
J=1.1482 £+ 0.0018. We see that the Monte Carlo error is five times less when we use the variance reduction
technique.

7. Summary

In this paper, we use numerical integration of SDEs together with the Monte Carlo technique to evaluate
conditional Wiener integrals of exponential-type functionals. Other known methods reduce the infinite-
dimensional integral to a high dimensional Riemann integral and the accuracy is reached by increasing its
dimension. The high dimensionality of these Riemann integrals makes calculation of the Wiener integrals
extremely difficult. An efficiency of the probabilistic approach considered here is due to the fact that the
problem of calculating the infinite-dimensional Wiener integral is reduced to the Cauchy problem for a
system of SDEs, which can naturally be regarded as one-dimensional. Moreover, due to the specific form of
this system, we propose efficient fourth-order Runge-Kutta methods. In [5,10,14], the probabilistic ap-
proach was used for computation of Wiener integrals with respect to the usual Wiener measure. Here, in the
case of conditional Wiener integrals, we deal with a more complicated system than in [5,10,14]. The solution
of this system contains a Markov representation of the Brownian bridge. The system is singular and this
circumstance stipulates a certain complexity of theoretical proofs although the constructed algorithms are
simple and effective. The effectiveness of these algorithms allows us to evaluate conditional Wiener integrals
for a large dimension of paths. There are two types of errors in our approach: the error of numerical in-
tegration and the Monte Carlo error. Both errors are analyzed in the paper: convergence theorems are
proved for the methods proposed and such a variance reduction technique as the method of control variates
is considered to reduce the Monte Carlo error. Finally, the algorithms are tested on a model problem.

Appendix A. Proof of the theorem on one-step error of the explicit method
The next corollary follows immediately from Lemma 3.1.

Corollary A.1. We have for t<0 < T:
EY(0,X,.(0)) = 7 (2,x),
Le., ¥ (0,X0,(0)) is a martingale.

Let us now consider some other properties of the functions y*(z,x). We note that " (¢,x) does not
depend on the order of ij,...,i; in «; (to see this it is enough to show that =2/ (f x) =
Y270 (¢ x)). Introduce the function y(r, o), o; = (i1,...,i;), which is equal to the number of appear-
ances of r in the set {ij,...,i;}. In what follows we will sometimes denote by the same o; different multi-
indices having the length j, and therefore functions * may differ although they have the same notation.
The next two lemmas are given without proofs.



292 G.N. Milstein, M. V. Tretyakov | Journal of Computational Physics 197 (2004) 275-298

Lemma A.2. We have for t < T:

a o X(l”, aj) o .
WY — LNt =2 Al
axrlﬁ (tax) T —¢ l/j (t7x)7 J 535 ( )

Corollary A.3. We have for t < T:

) =2 ) B g, s, (A2)
(B =W (e,x) = (T — W (15) + 2r W (%), > 1, (A3)

(b = x") (B =W (1,x) = (T = ) (t,%) + 7L 0) (T = Y (1,%) + 1(r, ) (T = )% (8, )
+ x(ryoy) (Lo W2 (8 x), > 2. (A4)

Note that y* in (A.4) are, in general, different. We do not distinguish them because in the following
analysis we will concern with the length of multi-indices only.

Lemma A.4. We have for 0 < T:

m 1/(2n) )
(E[(6" ~x500) % x (b7 ~23200)) w0 x(0)] ) <70
J=1,2,.., 01=0,1,...,n=1,2,..., (A.5)
where the constant C > 0 is independent of 0 (of course, it depends on n).

Now we are in position to make a detailed analysis of the remainder r(¢,x) = 7(¢,x) from (3.23). Let us
recall that the one-step error consists of integrals with integrands containing terms of the form
A(t,x) = L"(q1L'q2)(t, x), where ¢, (t,x) and g,(¢, x) are some functions from the class F. Since L3u = —L*(fu)
(cf. (3.4)), the number m = [ + n for all the terms A4(¢,x) participating in the remainder is less than or equal
to 4. Using Lemma 3.1, we can represent the term 4 = L"(q;L'q,)(0,X,.(0)) as

A(0,X,,(0)) = go(0, X;..(0 +Z Zga, (0, X, ()7 (6,X,(0)). (A6)

By Lemma A.4 (see (A.5) with / = 0), we get that

C

(s 00,0)P) ™ <

where the constant C is independent of 0.
Consequently (recall that m < 4), we obtain the following estimate:

Ch’

T (A7)

(Bt Xoato ") <

Using this rough estimate, we can show that the method (2.9), (2.10) is at least of order three. To prove the
fourth-order of its convergence, a more sophisticated analysis based on extraction of singularity is needed.
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To clarify the matter, we consider, for example, the following integral from the remainder r(z, x):

t+h -0 4 o -0 )
| e oo = - [ S m 0., 0) a0
_ / (t+h=0

24 Eg()(ev)(tx(e))

+ Z ZEga,-(G,X,x((?))w“/(&)(t,x(t‘)))] do. (A-8)

%

We will demonstrate the extraction of singularity analyzing the term with the highest singularity
24, (0,X,:(0))y*(0,X,,(0)). The singularity of y*(0,X,,(0)) is of order two, i.e.,
1/2 C
oy 2 <
(W™ 0.%0,00F) < =5

At the same time, ™ (0,X,,(0)) is a martingale (see Corollary A.1) and Ey™(0,X,.(0)) = ¢y™(0,a),
which is a constant independent of 6. To exploit this property of * in further analysis, we expand
£(0,X,:(0)) := 8.,(0,X,(0)) at (T, b):

B0.5(0) = &(7.0) 4 51 (T,0)0 = 1)+ Y 287, (11,00 )

1 & &
+ 2 rl%;] O’ 6gx’2 (T’ b) (X’r’l‘(e) B brl) (X’r’z‘(e) B brz)
10 d a2 ‘
g X0 =10+ 32 2 ()0 = 1) (X0) -~ )
R o3
e D ot (1) (X0(0) — 07 ) (X2(0) — ) (X200) — ), (A9)

3=l

where ¢ is a time between 0 and T and 5, and #, are points between X,,(0) and b.
Then, using Corollaries A.1 and A.3, we obtain

/ et h-0) Eg,,(0,X,.(0))y™(0,X,.(0))do

24
t+h
-]

4
R =07 o7, by (t,x) + 2
1

g N
E(Tv b)(f) - T)lﬂ (tvx)

24

%8 (7 b){(T — 00 (1,%) + 7(r, 2™ (1,2}

X"

AMQ n’cgﬂm

2

OE () {(T - 02 (13) + ) (T~ 0 (1)

+ Ox"1 0x"2

L=

+ 1(r2, 04) (T — O)™ (2, x) + 7(r2, o) 1 (11, “3)W2(1»x)}] do

+ Ep'(t,x;h) = °S'(t,x) + Ep'(t,x; h), (A.10)
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where S'(,x) is a linear combination of the functions y*(z,x), Y™ (¢,x), ¥™(¢,x), (T — )™ (¢,x), k™ (¢,x),
(T — W™ (t,x), ™ (t,x), (T — )"y (1,x), (T — )™ (1,x), K" (t,x), coefficients in this linear combina-
tion are independent of ¢, x, and A

. St h—0)* 1932
Bt =8 [ L Z Dy 0.x,0) | 3 SE 0. 0) 0 - 17
t
+Zd362—g(r )(e-r)(xr (9)—bf)+l Zd: Y S )
2 w0 & 6 axnoxown

X(X72(0) = B)(X73(0) = 572)(X3(0) — b“)] do.

Using the Cauchy—Bunyakovskii inequality and Lemma A.4, we obtain that

(E[p/(t,xo,a(t);h)]z”)”z" < \/% (A.11)

Thus, we extract the singularity by presenting the integral (A.10) as the sum of the singular part S'(z, x)
and the remainder. The singular part contains singularities of order from one to four, while the remainder
has non-singular terms and terms with singularity of order 1/2. By further expansion of g(0,X,.(0)) (cf.
(A.9)), we could also include the singularity of order 1/2 in the singular part making the remainder sin-
gular-free. But for our purposes (i.e., for proving Theorem 2.1) the obtained expression (A.10) is sufficient.

We similarly analyze the other terms in the integral (A.8). Note that "' has singularity of order 1/2 and we
include it in the remainder. So, S’ does not contain any y*'. Analogously, we consider all the integrals of the
remainder r(¢,x). In the case of an integral from ¢ + /2 to ¢ + h, we first take the conditional expectation of the
term like 4 with respect to #,,,,, in a similar way as above and then we repeat the procedure once again taking
the expectation of the product of the conditional expectation and f,, (or flz/z). As a result, we obtain an ex-
pression like the right-hand side of (A.10). Thus, Theorem 3.2 on the one-step error is proved.

Appendix B. Proof of the convergence theorem for the explicit method

In this appendix we give a proof of the convergence Theorem 2.1 for the method (2.9), (2.10).
According to (3.9) and (3.10), we have

Rk = \EYkr(tk,Xk)|
with r(¢,x) from (3.27).
Using the rough estimate (A.7) and the Cauchy—Bunyakovskii inequality, we get straightforward that
(recall that we assume uniform boundedness of the moments EY?):

KS
ngihz, k=0,1,...,N —2. (B.1)
(T —tr41)

But to prove (2.11), a more accurate estimate of R, is needed. We obtain such an estimate using Theorem
3.2.

Lemma B.1. We have

Kh?
Ri<—, k=0,...,N—-2, B.2
g VT — ( )

where K is independent of k and h.
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Proof. Note that we use the same letters C and K for different constants which are independent of 4 and %.
By Theorem 3.2 and the Cauchy—Bunyakovskii inequality, we obtain

cw
VT =t

where S; := S(4,X;), S(¢,x) and p(¢,x; h) are from (3.27). Recall that S, has singularity of order two, more
precisely

(o6) "< 75

Let F; := F(t;i_1,ti-1)2, t;, Xi-1,Xi—1)2, X;) be the function defined by the method (2.10) (see also (3.11)), i.e.,
the last line of (2.10) for £ =i — 1 can be written as

Yi=Y 1 +hE,.

Ri = |EYir(t, Xi)| = |EYi [°Sk + p(tx, Xi; h) || < I°|EYiSi| + (B.3)

Introduce S, := E(S¢|#,,), i < k. Due to Theorem 3.2 and Corollary A.1, S, is a linear combination of
W10, X)W (1, X0, U (10, XK0)s (T — 0™ (1, X0)s B (6,X0), (T — 60 (6, X0), ™ (,,), (T — )0
(t;, X)), (T — t)p™ (t:, X;), K™ (;, X;), coefficients in this linear combination are independent of #, #;, x, and /.
Consequently (cf. (A.5) with / = 0)

(E[Sk,i]z) . < (T—Ctl)z .

We see that though S;; has the same order of singularity as S, the singularity is shifted. Roughly
speaking, S, is less singular than Sy ;.;. Also note that £ (SkA,-|,97 ,H) = S, since Y* are martingales (see
Corollary A.1).

We fix k > 0 and consider B; := |EY:S;,|, i=k,k—1,...,1:

B; = |EY:Ski| = |[EYio1[1 + hF]Ski| < |EYio1Skio1| + h|EYi_ 1 FiSy). (B.4)

We expand the terms, which form F;, at (T, b) up to terms of first order, i.e., we write F; as a constant plus
a remainder consisting of products of f(#,x), some its derivatives and X7 — b" or t; — T with j =1i,i—1/2,
or i — 1. Then, using the Cauchy—Bunyakovskii inequality and Lemma A.4, we get:

C C
|EY,_1FiSyi| < K|EY:_ S| + m = KI|EY, 1S | + W
Hence, due to (B.4), we obtain
Ch .
BigBi_1+KhBi_1+W, l:k, k—l,...,l, (BS)
— ti
where By is evidently a constant.
Therefore,
Ch Ch
B < (1+Kh)'Bo+ (1 + Kh)' ™ ———5 + (1 + Kn)"? 7
(T — l‘]) (T — tz)
Ch k 1 c
+———— < ByekT 4+ CcekThy < ) B.6
(T_tk)3/2 ' ; (T_ti)3/2 VT — tit (B.6)

which together with (B.3) implies (B.2). O
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Remark B.2. It is possible to prove that R, <Kk, k=0,...,N — 2, with the constant K independent of 4
and k. But we restrict ourselves here to the estimate (B.2) since it is sufficient for proving Theorem 2.1 and is
obtained by less efforts than it would be needed for a more accurate estimate.

Since the operator L is not defined at = T, we need a separate analysis of the error on the last step Ry_;.
It is true that Ry_, < KA but for our purposes it is enough that

Ry 1 <Kh*, (B.7)

where K is independent of 4. We omit the proof of (B.7) here.
Now we are in position to prove the convergence theorem.

Proof of Theorem 2.1. Lemma B.1, estimate (B.7) and the relations (3.8), (3.9) imply

_ N-2 Kh5 .
EYyo1(T) — E¥yui( ‘ _ 2 Lkt
‘ ’ ’ =0 V T— tk+l

Since Zk 0 \/_ < C, we get
’EYo‘all(T) - EYola,l(T)] < Kh*,

i.e., we have proved that the method (2.9), (2.10) is of order four. O

Appendix C. Proof of the convergence theorem for the implicit method
This appendix contains the proof of convergence of the implicit Runge-Kutta method (4.1), (4.2).

Proof of Theorem 4.1. In the method (4.1), (4.2), the approximation Y (¢) is evaluated att = ¢, k = 1,...,N
while X (¢) is simulated at ¢ = #.,;/, and X (#) is not used in the algorithm. Due to this reason, we cannot
directly make use of relations like (3.8), (3.9) to prove convergence of the method (4.1), (4.2). To overcome
this difficulty, we consider the other algorithm:

hb—X(4) [h [T—1
X(terp) = X(8) +5 T—tkk \/,/ k+1/2£k+1/2, k=0,....N—1,

hb— X t t
X(ten) = X (trr2) + > T = tk]:if \/; 7_ tkl:;szﬂy k=0,...,N—=2, X(ty) = b,

and ¥, k=0,...,N — 1, are simulated by the same formulas as in (4.2) (or, what is the same, (4.3)). In
(C.1), &ki1p and &y are d-dimensional random vectors which components are mutually independent
random variables with standard normal distribution 47(0, 1).

Since X (¢) is simulated exactly both in (4.1) and (C.1) and, in particular, X (#./,) from (4.1) have the
same distributions as their counterparts in (C.1), it is clear that the estimate (4.4) for the algorithm (C.1),
(4.2) implies this estimate for (4.1), (4.2). At the same time, due to the presence of X(#.,) in (C.1), we can
make use of relations like (3.8), (3.9) to estimate the error of the algorithm (C.1), (4.2). In what follows, we
prove (4.4) for (C.1), (4.2).

We write the global error of (C.1), (4.2) in the form (3.8), (3.9) and introduce the one-step error of (C.1),
(4.2) as in (3.10):
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r(t,x) == Eu(t + h, X . (t + h)Yc1(t + k) —u(t,x). (C2)
We rewrite (4.3) on a single step and expand it as

_ h?

Yoa(t+h) =1+ hfip+ 510+ p, (C3)
where fi/, := f(t +h/2,X,(t + h/2)) and the random variable p is such that

(Ep?)'* < cn’. (C.4)

We substitute (C.3) in (C.2) and then expand the terms in the obtained relation using (3.5), (3.6) as we
did in the proof of Theorem 3.2 (see pp. 7-9). In fact, the expansions are simpler here since we are proving
the second order of convergence only. Then, taking into account that u(z,x) is a solution of (3.4), we arrive
at

r(t,x) = — /{Hh MELZUM)(H,)(M(H))dQ + h/tHh/z(t +h/2 — 0)EL*(fu)(0,X,.(0))d0

2
t+h 5 h2 5 t+h
+ thl/z/ (t+h—0)L"u(0,X,,(0))d0 + EEfl/z/ Lu(0,X,,.(0))do
t+h/2 t+h/2
+ Eu(t + h, X (t + h))p. (C.5)

Using Lemmas 3.1 and A.4 (cf. the proof of Theorem 3.2), we obtain that the one-step error of the
method (4.1), (4.2) can be written in the form

r(t,x) = W*S(t,x) + Ep(t,x; ), (C.6)

where S(z,x) is a linear combination of the functions y™ (¢, x), coefficients in this linear combination are
independent of ¢, x, and %; p(¢,x; k) is such that

CEEXC

with a constant C independent of ¢ and 4. We see that S(¢,x) in (C.6) and, consequently, the one-step error
r(t,x), has singularity of order one.

Further, using arguments similar to those in the proofs of Lemma B.1 and Theorem 2.1 (in fact, due to
the lower order of convergence and lower order of singularity, much simpler calculations are needed here),
we obtain (4.4). O

1/2n Ch';

—
T—t—h
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